已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid method for accurate starch estimation in adulterated turmeric using Vis-NIR spectroscopy

数学 主成分分析 特征选择 偏最小二乘回归 统计 模式识别(心理学) 随机森林 人工智能 计算机科学
作者
Madhusudan G. Lanjewar,Pranay P. Morajkar,Jivan S. Parab
出处
期刊:Food Additives & Contaminants: Part A [Informa]
卷期号:40 (9): 1131-1146 被引量:6
标识
DOI:10.1080/19440049.2023.2241557
摘要

Turmeric is widely used as a health supplement and foodstuff in South East Asian countries because of its medicinal benefits. Like several other plants and peppers, turmeric is prone to exploitation because of its economic value, rising consumer need, and essential food element that adds colour and flavour. Due to this, quick and comprehensive testing processes are needed to detect adulterants in turmeric. In this study, pure turmeric powders were mixed with starch in proportions ranging from 0 to 50% with a 1% variation to obtain different combinations. Reflectance spectra of pure turmeric and starch mixed samples were recorded using a JASCO-V770 spectrometer from 400 to 2050 nm. The recorded spectra were pre-processed using a Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV). The Savitzky-Golay (SG) filter was initially applied to these original (X), MSC, and SNV-corrected spectra. Secondly, the Extra Tree Regressor (ETR) feature selection method was employed to select the best features. Finally, principal component analysis (PCA) was used to reduce the dimension of the selected features. The stacked generalization method was applied to improve the performance of this work. Both regressors and classifier stacking techniques have been tested with different classification and regression methods. The K-Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF) models were used as base learners, and Logistic Regression (LRC) was used as a meta-model for classification and Linear Regression (LR) for regression analysis. The proposed method achieved the best regression performance with r2 of 0.999, Root Mean Square Error (RMSE) of 0.206, Ratio of Performance to Deviation (RPD) of 73.73, and Range Error Ratio (RER) of 480.58, whereas 100% F1 score and Matthew's Correlation Coefficient (MCC) classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实子骞完成签到 ,获得积分10
1秒前
大马哈鱼发布了新的文献求助10
3秒前
6秒前
脑洞疼应助刘畅采纳,获得10
6秒前
绿波电龙完成签到,获得积分10
6秒前
7秒前
7秒前
Wendell发布了新的文献求助10
8秒前
wanci应助典雅的俊驰采纳,获得10
8秒前
pjjpk01完成签到,获得积分10
9秒前
11秒前
小二郎应助不狗不吹采纳,获得10
11秒前
QYQ完成签到 ,获得积分10
11秒前
科研通AI6.1应助淡淡梦容采纳,获得10
13秒前
清爽冬莲发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
桐桐应助代沁采纳,获得30
15秒前
小饼干干发布了新的文献求助10
16秒前
16秒前
coco发布了新的文献求助10
17秒前
万能图书馆应助入变采纳,获得10
17秒前
18秒前
在水一方应助pjjjjjjj采纳,获得10
19秒前
希望天下0贩的0应助wdot采纳,获得10
19秒前
20秒前
20秒前
coco发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
22秒前
思源应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810