Hybrid method for accurate starch estimation in adulterated turmeric using Vis-NIR spectroscopy

数学 主成分分析 特征选择 偏最小二乘回归 统计 模式识别(心理学) 随机森林 人工智能 计算机科学
作者
Madhusudan G. Lanjewar,Pranay P. Morajkar,Jivan S. Parab
出处
期刊:Food Additives & Contaminants: Part A [Informa]
卷期号:40 (9): 1131-1146 被引量:6
标识
DOI:10.1080/19440049.2023.2241557
摘要

Turmeric is widely used as a health supplement and foodstuff in South East Asian countries because of its medicinal benefits. Like several other plants and peppers, turmeric is prone to exploitation because of its economic value, rising consumer need, and essential food element that adds colour and flavour. Due to this, quick and comprehensive testing processes are needed to detect adulterants in turmeric. In this study, pure turmeric powders were mixed with starch in proportions ranging from 0 to 50% with a 1% variation to obtain different combinations. Reflectance spectra of pure turmeric and starch mixed samples were recorded using a JASCO-V770 spectrometer from 400 to 2050 nm. The recorded spectra were pre-processed using a Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV). The Savitzky-Golay (SG) filter was initially applied to these original (X), MSC, and SNV-corrected spectra. Secondly, the Extra Tree Regressor (ETR) feature selection method was employed to select the best features. Finally, principal component analysis (PCA) was used to reduce the dimension of the selected features. The stacked generalization method was applied to improve the performance of this work. Both regressors and classifier stacking techniques have been tested with different classification and regression methods. The K-Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF) models were used as base learners, and Logistic Regression (LRC) was used as a meta-model for classification and Linear Regression (LR) for regression analysis. The proposed method achieved the best regression performance with r2 of 0.999, Root Mean Square Error (RMSE) of 0.206, Ratio of Performance to Deviation (RPD) of 73.73, and Range Error Ratio (RER) of 480.58, whereas 100% F1 score and Matthew's Correlation Coefficient (MCC) classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚灯君完成签到 ,获得积分10
1秒前
最好的完成签到,获得积分10
1秒前
2秒前
2秒前
是真的宇航员啊完成签到,获得积分10
3秒前
TANG完成签到 ,获得积分10
4秒前
4秒前
ao黛雷赫完成签到,获得积分10
4秒前
五月拾旧完成签到,获得积分10
5秒前
5秒前
GERRARD完成签到,获得积分10
5秒前
6秒前
DoIt完成签到,获得积分10
7秒前
organicboy完成签到 ,获得积分10
7秒前
7秒前
xuxu发布了新的文献求助10
8秒前
hzauhzau完成签到,获得积分10
8秒前
清秀聪健发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
虚心天思完成签到,获得积分20
9秒前
dede完成签到,获得积分10
10秒前
mmooo完成签到 ,获得积分10
10秒前
心灵的守望完成签到,获得积分10
10秒前
冷傲的涵双完成签到,获得积分10
11秒前
lalala完成签到,获得积分10
11秒前
诸笑白发布了新的文献求助10
12秒前
虚心天思发布了新的文献求助10
12秒前
蔬菜狗狗完成签到,获得积分10
13秒前
Dreamer完成签到,获得积分10
13秒前
sgz666发布了新的文献求助10
14秒前
土亢土亢土应助dede采纳,获得10
14秒前
小丁同学发布了新的文献求助10
14秒前
清秀聪健完成签到,获得积分10
15秒前
怪叔叔完成签到,获得积分10
16秒前
高效毕业完成签到,获得积分10
16秒前
超帅阿佳完成签到,获得积分10
16秒前
zmx123123完成签到,获得积分10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257240
求助须知:如何正确求助?哪些是违规求助? 2899132
关于积分的说明 8303865
捐赠科研通 2568424
什么是DOI,文献DOI怎么找? 1395064
科研通“疑难数据库(出版商)”最低求助积分说明 652936
邀请新用户注册赠送积分活动 630683