数学
主成分分析
特征选择
偏最小二乘回归
统计
模式识别(心理学)
随机森林
人工智能
计算机科学
作者
Madhusudan G. Lanjewar,Pranay P. Morajkar,Jivan S. Parab
标识
DOI:10.1080/19440049.2023.2241557
摘要
Turmeric is widely used as a health supplement and foodstuff in South East Asian countries because of its medicinal benefits. Like several other plants and peppers, turmeric is prone to exploitation because of its economic value, rising consumer need, and essential food element that adds colour and flavour. Due to this, quick and comprehensive testing processes are needed to detect adulterants in turmeric. In this study, pure turmeric powders were mixed with starch in proportions ranging from 0 to 50% with a 1% variation to obtain different combinations. Reflectance spectra of pure turmeric and starch mixed samples were recorded using a JASCO-V770 spectrometer from 400 to 2050 nm. The recorded spectra were pre-processed using a Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV). The Savitzky-Golay (SG) filter was initially applied to these original (X), MSC, and SNV-corrected spectra. Secondly, the Extra Tree Regressor (ETR) feature selection method was employed to select the best features. Finally, principal component analysis (PCA) was used to reduce the dimension of the selected features. The stacked generalization method was applied to improve the performance of this work. Both regressors and classifier stacking techniques have been tested with different classification and regression methods. The K-Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF) models were used as base learners, and Logistic Regression (LRC) was used as a meta-model for classification and Linear Regression (LR) for regression analysis. The proposed method achieved the best regression performance with r2 of 0.999, Root Mean Square Error (RMSE) of 0.206, Ratio of Performance to Deviation (RPD) of 73.73, and Range Error Ratio (RER) of 480.58, whereas 100% F1 score and Matthew's Correlation Coefficient (MCC) classification performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI