Research and Evaluation of the Allosteric Protein-Specific Force Field Based on a Pre-Training Deep Learning Model

变构调节 力场(虚构) 变构酶 计算机科学 化学 人工智能 生物化学
作者
Xiaoyue Ji,Xiaochen Cui,Zhengxin Li,Taeyoung Choi,Ying Wang,Wen Xiao,Yunshuo Zhao,Jinyin Zha,Jian Zhang,Haifeng Chen,Zhengtian Yu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (8): 2456-2468 被引量:6
标识
DOI:10.1021/acs.jcim.2c01369
摘要

Allosteric modulators are important regulation elements that bind the allosteric site beyond the active site, leading to the changes in dynamic and/or thermodynamic properties of the protein. Allosteric modulators have been a considerable interest as potential drugs with high selectivity and safety. However, current experimental methods have limitations to identify allosteric sites. Therefore, molecular dynamics simulation based on empirical force field becomes an important complement of experimental methods. Moreover, the precision and efficiency of current force fields need improvement. Deep learning and reweighting methods were used to train allosteric protein-specific precise force field (named APSF). Multiple allosteric proteins were used to evaluate the performance of APSF. The results indicate that APSF can capture different types of allosteric pockets and sample multiple energy-minimum reference conformations of allosteric proteins. At the same time, the efficiency of conformation sampling for APSF is higher than that for ff14SB. These findings confirm that the newly developed force field APSF can be effectively used to identify the allosteric pocket that can be further used to screen potential allosteric drugs based on these pockets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
调研昵称发布了新的文献求助50
1秒前
1秒前
1秒前
宋嘉新完成签到,获得积分10
2秒前
慕冬菱发布了新的文献求助10
2秒前
3秒前
李斌发布了新的文献求助20
3秒前
3秒前
3秒前
蜂蜜完成签到,获得积分10
3秒前
NoGtime发布了新的文献求助10
4秒前
不挑食的Marcophages完成签到,获得积分10
4秒前
搜集达人应助Youu采纳,获得10
4秒前
林夕应助文件撤销了驳回
4秒前
bob发布了新的文献求助10
5秒前
6秒前
JJL发布了新的文献求助10
6秒前
慕青应助grace123采纳,获得10
8秒前
ssc发布了新的文献求助10
8秒前
8秒前
快乐咸鱼完成签到 ,获得积分10
9秒前
苹果小玉发布了新的文献求助10
9秒前
CC发布了新的文献求助10
10秒前
ljty完成签到,获得积分10
11秒前
11秒前
杨yyyy发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
坐以待币完成签到 ,获得积分10
15秒前
16秒前
NoGtime完成签到,获得积分10
17秒前
17秒前
nullsci完成签到,获得积分10
17秒前
18秒前
共享精神应助杲杲采纳,获得10
18秒前
迷路安白完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580