食品科学
单核细胞增生李斯特菌
香芹酚
化学
丁香酚
抗菌剂
碘化丙啶
巴氏杀菌
精油
细菌
生物
生物化学
有机化学
程序性细胞死亡
遗传学
细胞凋亡
作者
Wooju Kim,Dong‐Hyun Kang
标识
DOI:10.1016/j.ijfoodmicro.2023.110210
摘要
Essential oil is a food additive with antimicrobial properties but with limitations due to strong organoleptic properties. However, thermal treatments can be applied to reduce essential oil content while ensuring antimicrobial activities in food matrices. In this study, the inactivation efficiency of essential oils on E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in buffered peptone water (BPW) and hot-chili sauce was evaluated when coupled with 915 MHz microwave heating. Essential oils used in this study did not affect the dielectric properties and further heating rate of BPW and hot-chili sauce. The dielectric constant of BPW was 76.3 and dielectric loss factor was 30.9. In addition, it took 85 s to reach 100 °C for all samples. Among essential oils, synergistic microbial inactivation with microwave heating was observed from carvacrol (CL) and citral (CI), but not from eugenol (EU) and Carvone (CN). Specifically, CL and microwave heating (M) for 45 s showed the most effective inactivation (ca. 6 log reduction) for the pathogens in BPW. Similar trends were shown in hot-chili sauce. However, M + CI inactivation did not show synergistic effects in hot-chili sauce. Microwave heating time for hot-chilis sauce was 40 s. In propidium iodide uptake study, M + CL was found to cause most severe damage to cell membrane (758.5 of PI value for E. coli O157:H7) while M + CU and M + CN had little impact. In DiBAC4(3) test, CL resulted in the largest value (2.09 for E. coli O157:H7). These observations highlight that CL induces synergistic effects as it caused severe membrane damage along with destruction of membrane potential. The combined treatment did not show any significant difference in quality change compared to untreated hot-chili sauce (p > 0.05). The result indicates the potential application of CL and M combination for hot-chili sauce processes to ensure microbiological safety with acceptable quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI