Novel segmentation and classification algorithm for detection of tomato leaf disease

人工智能 分割 蚁群优化算法 计算机科学 鉴定(生物学) 叶斑病 图像分割 模式识别(心理学) 蚁群 机器学习 生物 植物
作者
R. Raja Kumar,Jegadeesh Athimoolam,Ahilan Appathurai,Surendiran Rajendiran
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:35 (12) 被引量:1
标识
DOI:10.1002/cpe.7674
摘要

Summary The prevalence of tomato leaf diseases should be diagnosed in early‐stage to prevent spoilage of the entire field. Manually checking tomato diseases consumes more time and is labor‐intensive. In modern agriculture, machine and deep learning‐based disease identification techniques have been developed to effectively classify diseases. Most of the existing methods are inappropriate for horticulture due to their incompetence in handling the complex backgrounds of the image. In this article, a novel segmentation and classification algorithm is proposed for detecting tomato leaf diseases with complex background interference based on leaf segmentation fuzzy CNN (LSFCNN) and ant colony‐based mask RCNN (AC‐MRCNN). Foremostly the collected images are annotated and enhanced for further processing. Then the novel LSFCNN is implemented to separate the tomato leaf in a complex background. For classification, AC‐MRCNN is developed, which masks the disease spot and recognizes the diseases. Herein ant colony optimization algorithm is utilized to optimize the mask RCNN to increase the flow of information and gradients of the network. Over 14,817 uniform and complex background images are collected to train the model. The proposed method is profoundly effective for quite challenging background leaf disease classification, with an accuracy of 97.66% of eight diseases and one healthy class.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gmchen完成签到,获得积分10
1秒前
2秒前
ceeray23应助玫瑰采纳,获得10
2秒前
yu完成签到,获得积分10
3秒前
5秒前
Phi.Wang发布了新的文献求助10
5秒前
大个应助科研助手采纳,获得10
5秒前
一诺相许完成签到 ,获得积分10
6秒前
wtttt完成签到,获得积分10
7秒前
9秒前
积极以云完成签到,获得积分10
9秒前
tutoutou发布了新的文献求助10
10秒前
LLLLLLLLLLLLL完成签到,获得积分10
10秒前
且泛轻舟完成签到,获得积分10
12秒前
充电宝应助wtttt采纳,获得10
12秒前
13秒前
galaxy完成签到 ,获得积分10
13秒前
14秒前
艾莎莎5114完成签到,获得积分10
14秒前
yutj发布了新的文献求助10
14秒前
14秒前
CNAxiaozhu7应助虚幻的青槐采纳,获得10
15秒前
流沙无言完成签到 ,获得积分10
15秒前
马德里就思议完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
科研通AI5应助zky采纳,获得10
17秒前
俏皮的老城完成签到 ,获得积分10
17秒前
18秒前
kkkhhh发布了新的文献求助10
19秒前
fanfan发布了新的文献求助10
19秒前
19秒前
忧伤的冰薇完成签到 ,获得积分10
20秒前
Owen应助行走的sci采纳,获得10
21秒前
21秒前
yxzha发布了新的文献求助100
22秒前
研友_LNMmW8发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737163
求助须知:如何正确求助?哪些是违规求助? 3281006
关于积分的说明 10022478
捐赠科研通 2997708
什么是DOI,文献DOI怎么找? 1644786
邀请新用户注册赠送积分活动 782147
科研通“疑难数据库(出版商)”最低求助积分说明 749707