Inhibition of Structural Transformation and Surface Lattice Oxygen Activity for Excellent Stability Li-Rich Mn-Based Layered Oxides

材料科学 X射线光电子能谱 氧化还原 氧气 化学工程 晶体结构 尖晶石 扫描电子显微镜 透射电子显微镜 涂层 兴奋剂 分析化学(期刊) 纳米技术 结晶学 复合材料 化学 冶金 有机化学 色谱法 工程类 光电子学
作者
Yonglin Huo,Yijing Gu,Ziliang Chen,Xiao-Yu Ma,Yige Xiong,Hua-Fei Zhang,Fuzhong Wu,Xinyi Dai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (14): 18450-18462 被引量:15
标识
DOI:10.1021/acsami.2c23228
摘要

Li-rich Mn-based layered oxides (LLOs) are one of the most promising cathode materials, which have exceptional anionic redox activity and a capacity that surpasses 250 mA h/g. However, the change from a layered structure to a spinel structure and unstable anionic redox are accompanied by voltage attenuation, poor rate performance, and problematic capacity. The technique of stabilizing the crystal structure and reducing the surface oxygen activity is proposed in this paper. A coating layer and highly concentrated oxygen vacancies are developed on the material's surface, according to scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In situ EIS shows that structural transformation and oxygen release are inhibited during the first charge and discharge. Optimized 3@LRMA has an average attenuation voltage of 0.55 mV per cycle (vs 1.7 mV) and a capacity retention rate of 93.4% after 200 cycles (vs 52.8%). Postmortem analysis indicates that the successful doping of Al ions into the crystal structure effectively inhibits the structural alteration of the cycling process. The addition of oxygen vacancies reduces the surface lattice's redox activity. Additionally, surface structure deterioration is successfully halted by N- and Cl-doped carbon coating. This finding highlights the significance of lowering the surface lattice oxygen activity and preventing structural alteration, and it offers a workable solution to increase the LLO stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Robin发布了新的文献求助10
刚刚
hihihi完成签到 ,获得积分10
刚刚
SciGPT应助豆豆小baby采纳,获得10
刚刚
1秒前
1秒前
白苹果发布了新的文献求助10
1秒前
hohokuz发布了新的文献求助10
1秒前
结实芝麻完成签到 ,获得积分10
2秒前
研友_Z6Gm58完成签到 ,获得积分10
2秒前
sh完成签到,获得积分10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得70
3秒前
buno应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
涵青夏完成签到,获得积分10
3秒前
Linos应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
4秒前
孤独的远山完成签到,获得积分10
4秒前
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
残剑月应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836