Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces

修剪 计算机科学 人工智能 直线(几何图形) 计算机视觉 分割 几何学 数学 操作系统
作者
Geng Chen,Jie Qin,Boulbaba Ben Amor,Weiming Zhou,Hang Dai,Tao Zhou,Heyuan Huang,Ling Shao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3194-3204 被引量:1
标识
DOI:10.1109/tmi.2023.3263161
摘要

Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少年侠气夏老四完成签到,获得积分20
2秒前
3秒前
正直无春发布了新的文献求助10
4秒前
4秒前
于是完成签到,获得积分10
5秒前
qinsi15完成签到,获得积分10
6秒前
7秒前
聪慧的凡灵应助迅速又菡采纳,获得10
8秒前
9秒前
乐乐应助发酱采纳,获得10
11秒前
Orange应助qinsi15采纳,获得10
11秒前
正直无春完成签到,获得积分10
12秒前
谢珊发布了新的文献求助20
12秒前
棋士应助谭平采纳,获得10
12秒前
KKSTAR完成签到,获得积分10
14秒前
醉熏的天与应助123456采纳,获得10
16秒前
敢敢发布了新的文献求助10
16秒前
tuanhust应助高挑的向真采纳,获得10
16秒前
18秒前
coolkid应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
coolkid应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
coolkid应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
felix发布了新的文献求助30
19秒前
peterlee完成签到,获得积分10
20秒前
21秒前
小恐龙完成签到,获得积分10
22秒前
David完成签到 ,获得积分10
26秒前
121231完成签到,获得积分10
26秒前
yuzu完成签到,获得积分10
27秒前
明亮不乐发布了新的文献求助10
28秒前
29秒前
单于无极应助XU采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003