Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces

修剪 计算机科学 人工智能 直线(几何图形) 计算机视觉 分割 几何学 数学 操作系统
作者
Geng Chen,Jie Qin,Boulbaba Ben Amor,Weiming Zhou,Hang Dai,Tao Zhou,Heyuan Huang,Ling Shao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3194-3204 被引量:1
标识
DOI:10.1109/tmi.2023.3263161
摘要

Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极思松完成签到,获得积分20
刚刚
Chlxa完成签到 ,获得积分10
刚刚
4秒前
4秒前
斯文败类应助dungaway采纳,获得10
5秒前
KSung完成签到 ,获得积分10
8秒前
希望天下0贩的0应助Oasis采纳,获得10
8秒前
圆圆发布了新的文献求助10
8秒前
彤快乐完成签到,获得积分10
10秒前
Peng发布了新的文献求助10
10秒前
Oasis完成签到,获得积分10
15秒前
大白完成签到 ,获得积分10
15秒前
Kidmuse完成签到,获得积分10
15秒前
昏睡的保温杯完成签到,获得积分10
16秒前
17秒前
18秒前
不安士晋完成签到,获得积分10
20秒前
秋意浓完成签到,获得积分10
21秒前
shuogesama完成签到,获得积分10
21秒前
dungaway发布了新的文献求助10
21秒前
22秒前
生而追梦不止完成签到 ,获得积分10
23秒前
23秒前
echo完成签到 ,获得积分10
24秒前
ladette发布了新的文献求助10
28秒前
Zard完成签到,获得积分10
28秒前
29秒前
老衲完成签到,获得积分0
30秒前
小白完成签到 ,获得积分10
33秒前
燕子完成签到,获得积分10
34秒前
爱笑发布了新的文献求助10
34秒前
重要的小刘完成签到,获得积分10
34秒前
雾潋完成签到,获得积分10
35秒前
Eternity完成签到,获得积分10
35秒前
瞬华完成签到 ,获得积分10
35秒前
溜了溜了完成签到,获得积分10
35秒前
111完成签到,获得积分10
36秒前
葫芦娃大铁锤完成签到 ,获得积分10
36秒前
复杂念梦完成签到 ,获得积分10
38秒前
bopbopbaby完成签到 ,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011