Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces

修剪 计算机科学 人工智能 直线(几何图形) 计算机视觉 分割 几何学 数学 操作系统
作者
Geng Chen,Jie Qin,Boulbaba Ben Amor,Weiming Zhou,Hang Dai,Tao Zhou,Heyuan Huang,Ling Shao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3194-3204 被引量:1
标识
DOI:10.1109/tmi.2023.3263161
摘要

Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕研通完成签到,获得积分10
1秒前
毛哥关注了科研通微信公众号
1秒前
1秒前
2秒前
3秒前
啊z应助霍师傅采纳,获得10
3秒前
酷波er应助dreamhigh-mentha采纳,获得10
4秒前
是小志发布了新的文献求助10
4秒前
长不出恋爱脑只能长学术脑完成签到,获得积分10
5秒前
小蘑菇应助777采纳,获得10
5秒前
达芬琪发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
9秒前
王崇霖发布了新的文献求助10
9秒前
ppsweek发布了新的文献求助10
9秒前
10秒前
10秒前
哈哈发布了新的文献求助10
11秒前
专一的鑫完成签到,获得积分10
11秒前
万能图书馆应助hdd采纳,获得10
12秒前
焦杨波发布了新的文献求助10
12秒前
Owen应助ppsweek采纳,获得10
12秒前
是小志完成签到,获得积分10
13秒前
苻新竹发布了新的文献求助10
14秒前
所所应助资紫丝采纳,获得10
14秒前
醉熏的伊发布了新的文献求助10
14秒前
15秒前
武雨寒发布了新的文献求助10
15秒前
15秒前
16秒前
arrow完成签到,获得积分10
17秒前
kai完成签到,获得积分10
17秒前
王崇霖完成签到,获得积分10
19秒前
19秒前
20秒前
527应助耍酷的听枫采纳,获得20
20秒前
苻新竹完成签到,获得积分10
20秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051899
求助须知:如何正确求助?哪些是违规求助? 2709225
关于积分的说明 7416342
捐赠科研通 2353554
什么是DOI,文献DOI怎么找? 1245569
科研通“疑难数据库(出版商)”最低求助积分说明 605799
版权声明 595870