亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Detection of Tooth-Gingiva Trim Lines on Dental Surfaces

修剪 计算机科学 人工智能 直线(几何图形) 计算机视觉 分割 几何学 数学 操作系统
作者
Geng Chen,Jie Qin,Boulbaba Ben Amor,Weiming Zhou,Hang Dai,Tao Zhou,Heyuan Huang,Ling Shao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3194-3204 被引量:5
标识
DOI:10.1109/tmi.2023.3263161
摘要

Detecting the tooth-gingiva trim line from a dental surface plays a critical role in dental treatment planning and aligner 3D printing. Existing methods treat this task as a segmentation problem, which is resolved with geometric deep learning based mesh segmentation techniques. However, these methods can only provide indirect results (i.e., segmented teeth) and suffer from unsatisfactory accuracy due to the incapability of making full use of high-resolution dental surfaces. To this end, we propose a two-stage geometric deep learning framework for automatically detecting tooth-gingiva trim lines from dental surfaces. Our framework consists of a trim line proposal network (TLP-Net) for predicting an initial trim line from the low-resolution dental surface as well as a trim line refinement network (TLR-Net) for refining the initial trim line with the information from the high-resolution dental surface. Specifically, our TLP-Net predicts the initial trim line by fusing the multi-scale features from a U-Net with a proposed residual multi-scale attention fusion module. Moreover, we propose feature bridge modules and a trim line loss to further improve the accuracy. The resulting trim line is then fed to our TLR-Net, which is a deep-based LDDMM model with the high-resolution dental surface as input. In addition, dense connections are incorporated into TLR-Net for improved performance. Our framework provides an automatic solution to trim line detection by making full use of raw high-resolution dental surfaces. Extensive experiments on a clinical dental surface dataset demonstrate that our TLP-Net and TLR-Net are superior trim line detection methods and outperform cutting-edge methods in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
17秒前
量子星尘发布了新的文献求助10
26秒前
39秒前
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Hello应助散装洋芋采纳,获得10
2分钟前
大佬完成签到,获得积分10
2分钟前
2分钟前
2分钟前
散装洋芋发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助Criminology34采纳,获得300
3分钟前
4分钟前
4分钟前
走啊走完成签到,获得积分10
4分钟前
4分钟前
4分钟前
olekravchenko应助科研通管家采纳,获得10
4分钟前
4分钟前
Lucas应助君子不器采纳,获得10
4分钟前
无奈的日记本完成签到,获得积分10
5分钟前
充电宝应助散装洋芋采纳,获得10
5分钟前
CoderHao发布了新的文献求助10
5分钟前
5分钟前
5分钟前
CoderHao完成签到,获得积分20
5分钟前
李爱国应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554913
求助须知:如何正确求助?哪些是违规求助? 4639425
关于积分的说明 14656244
捐赠科研通 4581411
什么是DOI,文献DOI怎么找? 2512738
邀请新用户注册赠送积分活动 1487485
关于科研通互助平台的介绍 1458439