Study of convolutional neural network-based semantic segmentation methods on edge intelligence devices for field agricultural robot navigation line extraction

卷积神经网络 人工智能 计算机科学 分割 计算机视觉 领域(数学) GSM演进的增强数据速率 像素 图像分割 机器人 机器视觉 影子(心理学) 数学 纯数学 心理学 心理治疗师
作者
Jiya Yu,Jiye Zhang,Aijing Shu,Yujie Chen,Jianneng Chen,Jian Yang,Wei Tang,Yanchao Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107811-107811 被引量:40
标识
DOI:10.1016/j.compag.2023.107811
摘要

Smart agricultural machinery is emerging as the future trend for field robots, and the fully automatic robot has a great application prospect. However, it is a big challenge for robots to navigate in complex farmland environments. In this research, 5 deep learning-based computer vision methods under different field scenes for field navigation line extraction were studied and successfully deployed on an embedded system, which can be integrated into robots for automatic navigation in the future. The field road was segmented by the semantic segmentation algorithm at first, and then the navigation line is extracted from the segmented image by a polygon fitting method. Finally, all the models are transformed through the TensorRT library and deployed on the edge computing device Jetson Nano. In the experiment, five reprehensive semantic segmentation networks namely UNet, Deeplabv3+, BiseNetv1, BiseNetv2, and ENet networks were selected. Among the five networks, Deeplabv3+ is the most accurate. In five scenes, its average segmentation accuracy is 84.87 %, and the navigation line error is 9.59 pixels. Especially in the third scene with shadow and occlusion, it performs best, with only 8.34 pixel error, But the speed of Deeplabv3+ is only 9.7 FPS. ENet, BiseNetv1, and BiseNetv2 are lightweight networks. The speed of ENet is 16.8 FPS, BiseNetv2 is 17 FPS, and BiseNetv1 is 15.8 FPS. In segmentation accuracy and navigation line error, ENet performs better than BiseNet series networks, which are 84.94 % and 10.73 pixels, respectively. In the third scene with shadow and occlusion, it also performs slightly better than BiseNet series networks. In summary, deep learning-based semantic segmentation methods have strong robustness and stability in complex environment compared with previous research. Among all currently available neural networks, ENet has the best performance and good application potential in field navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泉竹晓筱完成签到,获得积分10
刚刚
peanut发布了新的文献求助10
刚刚
刚刚
共享精神应助受伤雁荷采纳,获得10
刚刚
领导范儿应助繁荣的行天采纳,获得10
1秒前
feifeizhu完成签到,获得积分10
2秒前
852应助麦子采纳,获得10
2秒前
李明涵发布了新的文献求助10
4秒前
5秒前
地泽万物完成签到,获得积分10
5秒前
annzl发布了新的文献求助10
5秒前
秦佳瑶发布了新的文献求助10
6秒前
科研通AI5应助豆豆采纳,获得10
7秒前
8秒前
晗晗完成签到,获得积分10
9秒前
9秒前
10秒前
无聊的万天完成签到,获得积分10
11秒前
11秒前
昵称呢发布了新的文献求助10
11秒前
12秒前
13秒前
张北海应助嘚嘚采纳,获得20
13秒前
14秒前
充电宝应助留白留白采纳,获得30
14秒前
14秒前
Shalan发布了新的文献求助10
14秒前
晗晗发布了新的文献求助10
15秒前
无风海发布了新的文献求助10
16秒前
等待的啤酒完成签到,获得积分10
17秒前
隐形曼青应助leeeeee采纳,获得10
18秒前
自由梦松完成签到,获得积分10
18秒前
坦率的匪应助称心寒松采纳,获得10
18秒前
FashionBoy应助超级盼烟采纳,获得10
18秒前
20秒前
Eliauk发布了新的文献求助10
20秒前
贺兰发布了新的文献求助10
20秒前
嘚嘚应助文件撤销了驳回
20秒前
21秒前
繁荣的行天完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629