已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study of convolutional neural network-based semantic segmentation methods on edge intelligence devices for field agricultural robot navigation line extraction

卷积神经网络 人工智能 计算机科学 分割 计算机视觉 领域(数学) GSM演进的增强数据速率 像素 图像分割 机器人 机器视觉 影子(心理学) 数学 纯数学 心理学 心理治疗师
作者
Jiya Yu,Jiye Zhang,Aijing Shu,Yujie Chen,Jianneng Chen,Jian Yang,Wei Tang,Yanchao Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107811-107811 被引量:40
标识
DOI:10.1016/j.compag.2023.107811
摘要

Smart agricultural machinery is emerging as the future trend for field robots, and the fully automatic robot has a great application prospect. However, it is a big challenge for robots to navigate in complex farmland environments. In this research, 5 deep learning-based computer vision methods under different field scenes for field navigation line extraction were studied and successfully deployed on an embedded system, which can be integrated into robots for automatic navigation in the future. The field road was segmented by the semantic segmentation algorithm at first, and then the navigation line is extracted from the segmented image by a polygon fitting method. Finally, all the models are transformed through the TensorRT library and deployed on the edge computing device Jetson Nano. In the experiment, five reprehensive semantic segmentation networks namely UNet, Deeplabv3+, BiseNetv1, BiseNetv2, and ENet networks were selected. Among the five networks, Deeplabv3+ is the most accurate. In five scenes, its average segmentation accuracy is 84.87 %, and the navigation line error is 9.59 pixels. Especially in the third scene with shadow and occlusion, it performs best, with only 8.34 pixel error, But the speed of Deeplabv3+ is only 9.7 FPS. ENet, BiseNetv1, and BiseNetv2 are lightweight networks. The speed of ENet is 16.8 FPS, BiseNetv2 is 17 FPS, and BiseNetv1 is 15.8 FPS. In segmentation accuracy and navigation line error, ENet performs better than BiseNet series networks, which are 84.94 % and 10.73 pixels, respectively. In the third scene with shadow and occlusion, it also performs slightly better than BiseNet series networks. In summary, deep learning-based semantic segmentation methods have strong robustness and stability in complex environment compared with previous research. Among all currently available neural networks, ENet has the best performance and good application potential in field navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
模糊老师完成签到,获得积分10
1秒前
壮观不斜完成签到,获得积分10
2秒前
4秒前
5秒前
健忘的溪灵完成签到 ,获得积分10
7秒前
7秒前
Shiyuzz完成签到,获得积分10
9秒前
文静的峻熙完成签到,获得积分10
9秒前
Ca发布了新的文献求助10
10秒前
wzq发布了新的文献求助10
11秒前
丘比特应助cara33采纳,获得20
12秒前
sky发布了新的文献求助10
12秒前
russing完成签到 ,获得积分10
14秒前
儿学化学打断腿完成签到,获得积分10
14秒前
常绝山完成签到 ,获得积分10
14秒前
完美世界应助CCccCCC采纳,获得10
17秒前
17秒前
17秒前
wangli完成签到,获得积分10
18秒前
Ca完成签到,获得积分10
18秒前
19秒前
壮观不斜发布了新的文献求助10
21秒前
21秒前
二三发布了新的文献求助10
22秒前
NSS发布了新的文献求助10
22秒前
天宁发布了新的文献求助10
23秒前
大个应助deway采纳,获得10
23秒前
25秒前
cara33发布了新的文献求助20
25秒前
量子星尘发布了新的文献求助10
26秒前
保持好心情完成签到 ,获得积分10
28秒前
二三完成签到,获得积分10
29秒前
天宁完成签到,获得积分20
29秒前
CCccCCC发布了新的文献求助10
30秒前
Takahara2000应助WENWEN采纳,获得10
30秒前
31秒前
31秒前
34秒前
科研通AI6应助科研通管家采纳,获得30
35秒前
慕青应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869185
求助须知:如何正确求助?哪些是违规求助? 4160301
关于积分的说明 12901202
捐赠科研通 3914903
什么是DOI,文献DOI怎么找? 2150119
邀请新用户注册赠送积分活动 1168536
关于科研通互助平台的介绍 1071117