Noise-conscious explicit weighting network for robust low-dose CT imaging

噪音(视频) 计算机科学 加权 人工智能 图像质量 图像噪声 噪声测量 模式识别(心理学) 计算机视觉 降噪 图像(数学) 医学 放射科
作者
Shengwang Peng,Jingyi Liao,Danyang Li,Zhaoying Bian,Dong Zeng,Jing Huang,Jianhua Ma
标识
DOI:10.1117/12.2654192
摘要

Supervised deep learning (DL) methods have been widely developed to remove noise-induced artifacts and promote image quality in the low-dose CT imaging task via good mapping capabilities. These supervised DL methods are usually trained based on a large amount of low- and normal-dose sinogram/image pairs and the reconstruction performance of such supervised DL methods heavily depends on the quality of reference training images. In the CT imaging, it is challenging to collect lots of high quality reference training images in practice due to the risk of high radiation dose to patients. Moreover, the medium quality or even low quality reference training images (i.e., the low quality labeled data with some noise-induced artifacts) might be collected for the supervised DL networks training, which would degrade the reconstruction performance of the network. To address this issue, in this work, we propose an effective noise-conscious explicit weighting network (NEW-Net) for low-dose CT imaging wherein the CT images with noise-induced artifacts are treated as labeled data in the network training. Specifically, the proposed NEW-Net consists of two sub-networks, i.e., noise estimation sub- network, and noise-conscious weighting sub-network. The noise estimation sub-network produces the noise map from the low-quality training data to estimate the noise-conscious weights, which determines the contribution of the label data, i.e., small weights go along with the low quality label data with severe nosie-induced artifacts, and large weights go along with high quality label data with a few noise-induced artifacts. Then the estimated weights are used to condition the training data to train the noise-conscious weighting sub-network to eliminate the effects of low quality label data and promote the reconstruction performance and stability of the proposed NEW-Net method. The Mayo clinic data are utilized to validate and evaluate the reconstruction performance of the proposed NEW-Net method. And the experimental results demonstrate that the proposed NEW-Net method outperforms the other competing methods in the case of low quality training data, in terms of noise-induced artifacts and structure detail preservation both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊小受完成签到,获得积分10
1秒前
Hancock完成签到 ,获得积分0
1秒前
陈婷发布了新的文献求助10
2秒前
鹤昀发布了新的文献求助10
2秒前
4秒前
鱼鱼和石头完成签到 ,获得积分10
6秒前
6秒前
可乐完成签到 ,获得积分10
7秒前
言非离完成签到 ,获得积分10
8秒前
龙伯乐发布了新的文献求助10
11秒前
2012csc完成签到 ,获得积分0
11秒前
充满希望发布了新的文献求助10
11秒前
13秒前
风中白易完成签到,获得积分10
13秒前
粗犷的灵松完成签到 ,获得积分10
14秒前
15秒前
wxh完成签到 ,获得积分10
16秒前
研究生完成签到 ,获得积分10
17秒前
隐形曼青应助云水雾心采纳,获得10
17秒前
18秒前
tys0713104发布了新的文献求助10
22秒前
新秀完成签到,获得积分10
23秒前
yingying完成签到,获得积分10
23秒前
为什么完成签到,获得积分10
25秒前
carnationli发布了新的文献求助20
26秒前
27秒前
哎咿呀哎呀完成签到,获得积分10
28秒前
年年完成签到 ,获得积分10
30秒前
周大福完成签到 ,获得积分10
31秒前
小二郎应助tys0713104采纳,获得10
31秒前
云水雾心发布了新的文献求助10
32秒前
Robby完成签到 ,获得积分10
33秒前
科研通AI6应助明天采纳,获得10
35秒前
FF完成签到 ,获得积分10
37秒前
甜乎贝贝完成签到 ,获得积分10
41秒前
等待念之完成签到,获得积分10
42秒前
知了完成签到 ,获得积分10
43秒前
温如军完成签到 ,获得积分10
44秒前
Weiweiweixiao完成签到,获得积分10
46秒前
落霞与孤鹜齐飞完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565231
求助须知:如何正确求助?哪些是违规求助? 4650088
关于积分的说明 14689720
捐赠科研通 4591964
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491925
关于科研通互助平台的介绍 1463159