已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Noise-conscious explicit weighting network for robust low-dose CT imaging

噪音(视频) 计算机科学 加权 人工智能 图像质量 图像噪声 噪声测量 模式识别(心理学) 计算机视觉 降噪 图像(数学) 医学 放射科
作者
Shengwang Peng,Jingyi Liao,Danyang Li,Zhaoying Bian,Dong Zeng,Jing Huang,Jianhua Ma
标识
DOI:10.1117/12.2654192
摘要

Supervised deep learning (DL) methods have been widely developed to remove noise-induced artifacts and promote image quality in the low-dose CT imaging task via good mapping capabilities. These supervised DL methods are usually trained based on a large amount of low- and normal-dose sinogram/image pairs and the reconstruction performance of such supervised DL methods heavily depends on the quality of reference training images. In the CT imaging, it is challenging to collect lots of high quality reference training images in practice due to the risk of high radiation dose to patients. Moreover, the medium quality or even low quality reference training images (i.e., the low quality labeled data with some noise-induced artifacts) might be collected for the supervised DL networks training, which would degrade the reconstruction performance of the network. To address this issue, in this work, we propose an effective noise-conscious explicit weighting network (NEW-Net) for low-dose CT imaging wherein the CT images with noise-induced artifacts are treated as labeled data in the network training. Specifically, the proposed NEW-Net consists of two sub-networks, i.e., noise estimation sub- network, and noise-conscious weighting sub-network. The noise estimation sub-network produces the noise map from the low-quality training data to estimate the noise-conscious weights, which determines the contribution of the label data, i.e., small weights go along with the low quality label data with severe nosie-induced artifacts, and large weights go along with high quality label data with a few noise-induced artifacts. Then the estimated weights are used to condition the training data to train the noise-conscious weighting sub-network to eliminate the effects of low quality label data and promote the reconstruction performance and stability of the proposed NEW-Net method. The Mayo clinic data are utilized to validate and evaluate the reconstruction performance of the proposed NEW-Net method. And the experimental results demonstrate that the proposed NEW-Net method outperforms the other competing methods in the case of low quality training data, in terms of noise-induced artifacts and structure detail preservation both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耶耶完成签到,获得积分20
2秒前
Doctor完成签到 ,获得积分10
2秒前
拼搏的寒凝完成签到 ,获得积分10
3秒前
大学生完成签到 ,获得积分10
3秒前
林林发布了新的文献求助10
4秒前
Only1完成签到,获得积分10
5秒前
轻松笙完成签到,获得积分10
6秒前
小张同学完成签到 ,获得积分10
9秒前
DChen完成签到 ,获得积分10
10秒前
嘟嘟雯完成签到 ,获得积分10
11秒前
11秒前
情怀应助琬碗采纳,获得30
12秒前
Liangyong_Fu完成签到 ,获得积分10
12秒前
13秒前
Only1发布了新的文献求助10
13秒前
昵称完成签到,获得积分10
13秒前
13秒前
土豆你个西红柿完成签到 ,获得积分10
14秒前
小丸子完成签到,获得积分10
15秒前
Dlan完成签到,获得积分10
15秒前
Aliya完成签到 ,获得积分10
15秒前
dadabad完成签到 ,获得积分10
16秒前
xixiYa_发布了新的文献求助10
17秒前
小蘑菇应助小肥采纳,获得10
17秒前
jjj完成签到 ,获得积分10
18秒前
在水一方应助xuyidan采纳,获得10
18秒前
张zz完成签到 ,获得积分10
18秒前
dly完成签到 ,获得积分10
18秒前
坚强的缘分完成签到,获得积分10
19秒前
Criminology34应助chd采纳,获得10
19秒前
山东老铁完成签到 ,获得积分10
20秒前
沉梦昂志_hzy完成签到,获得积分0
21秒前
23秒前
23秒前
25秒前
乳酸菌小面包完成签到,获得积分10
25秒前
凤里完成签到 ,获得积分10
27秒前
朱明完成签到 ,获得积分10
28秒前
性感母蟑螂完成签到 ,获得积分10
28秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386