已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Noise-conscious explicit weighting network for robust low-dose CT imaging

噪音(视频) 计算机科学 加权 人工智能 图像质量 图像噪声 噪声测量 模式识别(心理学) 计算机视觉 降噪 图像(数学) 医学 放射科
作者
Shengwang Peng,Jingyi Liao,Danyang Li,Zhaoying Bian,Dong Zeng,Jing Huang,Jianhua Ma
标识
DOI:10.1117/12.2654192
摘要

Supervised deep learning (DL) methods have been widely developed to remove noise-induced artifacts and promote image quality in the low-dose CT imaging task via good mapping capabilities. These supervised DL methods are usually trained based on a large amount of low- and normal-dose sinogram/image pairs and the reconstruction performance of such supervised DL methods heavily depends on the quality of reference training images. In the CT imaging, it is challenging to collect lots of high quality reference training images in practice due to the risk of high radiation dose to patients. Moreover, the medium quality or even low quality reference training images (i.e., the low quality labeled data with some noise-induced artifacts) might be collected for the supervised DL networks training, which would degrade the reconstruction performance of the network. To address this issue, in this work, we propose an effective noise-conscious explicit weighting network (NEW-Net) for low-dose CT imaging wherein the CT images with noise-induced artifacts are treated as labeled data in the network training. Specifically, the proposed NEW-Net consists of two sub-networks, i.e., noise estimation sub- network, and noise-conscious weighting sub-network. The noise estimation sub-network produces the noise map from the low-quality training data to estimate the noise-conscious weights, which determines the contribution of the label data, i.e., small weights go along with the low quality label data with severe nosie-induced artifacts, and large weights go along with high quality label data with a few noise-induced artifacts. Then the estimated weights are used to condition the training data to train the noise-conscious weighting sub-network to eliminate the effects of low quality label data and promote the reconstruction performance and stability of the proposed NEW-Net method. The Mayo clinic data are utilized to validate and evaluate the reconstruction performance of the proposed NEW-Net method. And the experimental results demonstrate that the proposed NEW-Net method outperforms the other competing methods in the case of low quality training data, in terms of noise-induced artifacts and structure detail preservation both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
5秒前
tianxiong发布了新的文献求助10
6秒前
陶醉的雪一完成签到,获得积分10
7秒前
SciGPT应助ycj采纳,获得10
8秒前
华仔应助Asteroid采纳,获得10
11秒前
14秒前
完美世界应助matteo采纳,获得10
15秒前
16秒前
zhou发布了新的文献求助10
17秒前
18秒前
20秒前
LILI发布了新的文献求助10
21秒前
Davy_Y发布了新的文献求助10
23秒前
ycj发布了新的文献求助10
23秒前
Orange应助YY采纳,获得30
23秒前
28秒前
追寻地坛发布了新的文献求助10
32秒前
Frank给Frank的求助进行了留言
34秒前
我是老大应助TiancHUA采纳,获得30
38秒前
潘宋驳回了华仔应助
39秒前
43秒前
44秒前
44秒前
matteo发布了新的文献求助10
49秒前
49秒前
52秒前
chefiona完成签到 ,获得积分10
53秒前
华仔应助林夕采纳,获得10
53秒前
李健的小迷弟应助Flemyng采纳,获得10
53秒前
53秒前
54秒前
54秒前
科研美少女完成签到 ,获得积分10
54秒前
慕慕完成签到 ,获得积分10
55秒前
Asteroid发布了新的文献求助10
56秒前
57秒前
TiancHUA发布了新的文献求助30
59秒前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125756
求助须知:如何正确求助?哪些是违规求助? 2776061
关于积分的说明 7729059
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292114
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380