Noise-conscious explicit weighting network for robust low-dose CT imaging

噪音(视频) 计算机科学 加权 人工智能 图像质量 图像噪声 噪声测量 模式识别(心理学) 计算机视觉 降噪 图像(数学) 医学 放射科
作者
Shengwang Peng,Jingyi Liao,Danyang Li,Zhaoying Bian,Dong Zeng,Jing Huang,Jianhua Ma
标识
DOI:10.1117/12.2654192
摘要

Supervised deep learning (DL) methods have been widely developed to remove noise-induced artifacts and promote image quality in the low-dose CT imaging task via good mapping capabilities. These supervised DL methods are usually trained based on a large amount of low- and normal-dose sinogram/image pairs and the reconstruction performance of such supervised DL methods heavily depends on the quality of reference training images. In the CT imaging, it is challenging to collect lots of high quality reference training images in practice due to the risk of high radiation dose to patients. Moreover, the medium quality or even low quality reference training images (i.e., the low quality labeled data with some noise-induced artifacts) might be collected for the supervised DL networks training, which would degrade the reconstruction performance of the network. To address this issue, in this work, we propose an effective noise-conscious explicit weighting network (NEW-Net) for low-dose CT imaging wherein the CT images with noise-induced artifacts are treated as labeled data in the network training. Specifically, the proposed NEW-Net consists of two sub-networks, i.e., noise estimation sub- network, and noise-conscious weighting sub-network. The noise estimation sub-network produces the noise map from the low-quality training data to estimate the noise-conscious weights, which determines the contribution of the label data, i.e., small weights go along with the low quality label data with severe nosie-induced artifacts, and large weights go along with high quality label data with a few noise-induced artifacts. Then the estimated weights are used to condition the training data to train the noise-conscious weighting sub-network to eliminate the effects of low quality label data and promote the reconstruction performance and stability of the proposed NEW-Net method. The Mayo clinic data are utilized to validate and evaluate the reconstruction performance of the proposed NEW-Net method. And the experimental results demonstrate that the proposed NEW-Net method outperforms the other competing methods in the case of low quality training data, in terms of noise-induced artifacts and structure detail preservation both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助xielunwen采纳,获得10
2秒前
2秒前
JamesPei应助lumia采纳,获得10
3秒前
充电宝应助喜悦的怜晴采纳,获得10
4秒前
lulu8809完成签到,获得积分10
5秒前
哒哒猪发布了新的文献求助10
5秒前
7秒前
shinn发布了新的文献求助10
7秒前
隐形曼青应助yyauthor采纳,获得10
10秒前
13秒前
春风十里完成签到 ,获得积分10
14秒前
Ultraman完成签到,获得积分10
15秒前
宋晴也发布了新的文献求助10
18秒前
万能图书馆应助江月年采纳,获得10
19秒前
19秒前
20秒前
lifeng完成签到 ,获得积分10
21秒前
23秒前
omelet完成签到,获得积分10
23秒前
23秒前
26秒前
26秒前
852应助旺旺碎冰冰采纳,获得10
27秒前
shinn发布了新的文献求助10
27秒前
科研通AI2S应助高浩渊采纳,获得10
28秒前
29秒前
善良的新之完成签到 ,获得积分10
29秒前
超饿的肥羊完成签到,获得积分10
29秒前
宋晴也完成签到,获得积分10
29秒前
31秒前
32秒前
三颗板牙发布了新的文献求助10
32秒前
33秒前
34秒前
ZHX发布了新的文献求助10
35秒前
35秒前
念姬发布了新的文献求助10
37秒前
丘比特应助浨归采纳,获得10
38秒前
所所应助菁菁业业采纳,获得20
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450