亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real‐world data

奎硫平 单变量 富马酸奎硫平 单变量分析 萧条(经济学) 精神分裂症(面向对象编程) 治疗药物监测 统计 医学 机器学习 心理学 精神科 计算机科学 非定型抗精神病薬 数学 多元分析 抗精神病药 药品 多元统计 经济 宏观经济学
作者
Yupei Hao,Jinyuan Zhang,Lin Yang,Chunhua Zhou,Ze Yu,Fei Gao,Xin Hao,Xiaolu Pang,Jing Yu
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:89 (9): 2714-2725 被引量:12
标识
DOI:10.1111/bcp.15734
摘要

Aims This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real‐world data via machine learning techniques to assist clinical regimen decisions. Methods A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10‐fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation. Results Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis ( P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R 2 = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200–750 ng mL −1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value. Conclusions This work is the first real‐world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
安年完成签到 ,获得积分10
19秒前
42秒前
汉堡包应助王王碎冰冰采纳,获得10
49秒前
1分钟前
555557发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
555557完成签到,获得积分10
1分钟前
2分钟前
2分钟前
王王碎冰冰关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天天快乐应助111采纳,获得20
2分钟前
FJXTY发布了新的文献求助10
3分钟前
3分钟前
3分钟前
111发布了新的文献求助20
3分钟前
bkagyin应助FJXTY采纳,获得10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
彭于晏应助迅速的岩采纳,获得10
3分钟前
3分钟前
3分钟前
赵赵发布了新的文献求助10
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
3分钟前
赵赵完成签到,获得积分20
3分钟前
Willow完成签到,获得积分10
3分钟前
JamesPei应助赵赵采纳,获得10
4分钟前
研友_VZG7GZ应助轻松凌柏采纳,获得10
4分钟前
4分钟前
符寄云发布了新的文献求助10
4分钟前
充电宝应助yihuifa采纳,获得10
4分钟前
斯文败类应助符寄云采纳,获得10
4分钟前
小马甲应助皮皮桂采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553