A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real‐world data

奎硫平 单变量 富马酸奎硫平 单变量分析 萧条(经济学) 精神分裂症(面向对象编程) 治疗药物监测 统计 医学 机器学习 心理学 精神科 计算机科学 非定型抗精神病薬 数学 多元分析 抗精神病药 药品 多元统计 经济 宏观经济学
作者
Yupei Hao,Jinyuan Zhang,Lin Yang,Chunhua Zhou,Ze Yu,Fei Gao,Xin Hao,Xiaolu Pang,Jing Yu
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:89 (9): 2714-2725 被引量:12
标识
DOI:10.1111/bcp.15734
摘要

Aims This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real‐world data via machine learning techniques to assist clinical regimen decisions. Methods A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10‐fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation. Results Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis ( P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R 2 = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200–750 ng mL −1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value. Conclusions This work is the first real‐world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助婷婷采纳,获得10
3秒前
哦豁拐咯完成签到,获得积分10
4秒前
4秒前
小智0921完成签到,获得积分10
4秒前
anan应助xiaohu采纳,获得20
5秒前
5秒前
老纪1999完成签到,获得积分10
5秒前
XIA发布了新的文献求助10
5秒前
彤彤发布了新的文献求助10
6秒前
静1997完成签到,获得积分20
6秒前
小马甲应助贪玩的寄松采纳,获得10
7秒前
核桃酥发布了新的文献求助10
8秒前
8秒前
静1997发布了新的文献求助10
10秒前
春风十里完成签到,获得积分10
10秒前
科目三应助scifff采纳,获得10
12秒前
12秒前
ce发布了新的文献求助10
13秒前
XIA完成签到,获得积分10
13秒前
16秒前
fred完成签到,获得积分20
16秒前
共享精神应助期颐七采纳,获得10
16秒前
科研通AI6应助2_3_10采纳,获得10
18秒前
灿烂千阳完成签到,获得积分10
18秒前
20秒前
aliderichang完成签到 ,获得积分10
20秒前
fred发布了新的文献求助30
20秒前
21秒前
21秒前
安医清嘉完成签到,获得积分10
21秒前
彭于晏应助jun采纳,获得10
21秒前
23秒前
传奇3应助伯赏聪展采纳,获得10
25秒前
打打应助zzzshy采纳,获得10
25秒前
天天快乐应助无足鸟采纳,获得10
25秒前
山与发布了新的文献求助10
27秒前
27秒前
song发布了新的文献求助30
30秒前
共享精神应助张同学采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818