A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real‐world data

奎硫平 单变量 富马酸奎硫平 单变量分析 萧条(经济学) 精神分裂症(面向对象编程) 治疗药物监测 统计 医学 机器学习 心理学 精神科 计算机科学 非定型抗精神病薬 数学 多元分析 抗精神病药 药品 多元统计 经济 宏观经济学
作者
Yupei Hao,Jinyuan Zhang,Lin Yang,Chunhua Zhou,Ze Yu,Fei Gao,Xin Hao,Xiaolu Pang,Jing Yu
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:89 (9): 2714-2725 被引量:4
标识
DOI:10.1111/bcp.15734
摘要

This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real-world data via machine learning techniques to assist clinical regimen decisions.A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10-fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation.Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis (P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R2 = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200-750 ng mL-1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value.This work is the first real-world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唯美发布了新的文献求助10
1秒前
3秒前
4秒前
SciGPT应助rachel03采纳,获得30
5秒前
Ava应助收声采纳,获得10
5秒前
6秒前
1122完成签到,获得积分10
6秒前
瓶子里的大好人完成签到,获得积分10
7秒前
8秒前
hqr发布了新的文献求助10
9秒前
yangzai发布了新的文献求助10
9秒前
nihao完成签到,获得积分10
9秒前
orixero应助辛子采纳,获得10
9秒前
量子星尘发布了新的文献求助50
10秒前
11秒前
12秒前
ED应助Smartan采纳,获得10
13秒前
13秒前
insane完成签到,获得积分10
15秒前
Panini发布了新的文献求助10
16秒前
Anna完成签到,获得积分10
16秒前
rachel03发布了新的文献求助30
17秒前
19秒前
21秒前
大耳朵图图完成签到,获得积分10
23秒前
jingwen发布了新的文献求助10
23秒前
Abner完成签到,获得积分10
25秒前
halabouqii发布了新的文献求助10
25秒前
娜娜完成签到 ,获得积分10
25秒前
26秒前
27秒前
28秒前
吴真好完成签到,获得积分10
30秒前
jiangchuansm完成签到,获得积分10
30秒前
30秒前
搞怪网络发布了新的文献求助10
31秒前
666完成签到,获得积分10
32秒前
Jeremy完成签到,获得积分10
32秒前
wodel发布了新的文献求助10
34秒前
辛子发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150