A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real‐world data

奎硫平 单变量 富马酸奎硫平 单变量分析 萧条(经济学) 精神分裂症(面向对象编程) 治疗药物监测 统计 医学 机器学习 心理学 精神科 计算机科学 非定型抗精神病薬 数学 多元分析 抗精神病药 药品 多元统计 经济 宏观经济学
作者
Yupei Hao,Jinyuan Zhang,Lin Yang,Chunhua Zhou,Ze Yu,Fei Gao,Xin Hao,Xiaolu Pang,Jing Yu
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:89 (9): 2714-2725 被引量:12
标识
DOI:10.1111/bcp.15734
摘要

Aims This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real‐world data via machine learning techniques to assist clinical regimen decisions. Methods A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10‐fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation. Results Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis ( P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R 2 = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200–750 ng mL −1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value. Conclusions This work is the first real‐world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yangliu采纳,获得10
1秒前
1秒前
1秒前
上岸学学学完成签到 ,获得积分10
1秒前
浮游应助rxh采纳,获得10
2秒前
李明星发布了新的文献求助20
2秒前
李健应助章鱼采纳,获得10
2秒前
3秒前
3秒前
NexusExplorer应助嘟嘟嘟采纳,获得10
4秒前
4秒前
SciGPT应助CChen采纳,获得10
4秒前
李爱国应助西瓜妹采纳,获得10
4秒前
lww关注了科研通微信公众号
4秒前
包容的小蚂蚁完成签到,获得积分10
5秒前
Ava应助galaxy采纳,获得10
7秒前
7秒前
7秒前
璐璐完成签到,获得积分10
7秒前
7秒前
孙雪婷发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助150
8秒前
山水之乐发布了新的文献求助10
9秒前
9秒前
滴滴完成签到,获得积分10
10秒前
10秒前
嘟嘟嘟完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
璐璐发布了新的文献求助10
12秒前
雨rain发布了新的文献求助10
13秒前
Exotic完成签到,获得积分20
14秒前
Akim应助mount采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
Yany完成签到,获得积分20
16秒前
罗是一发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607