Tongue image segmentation algorithm based on deep convolutional neural network and attention mechanism

计算机科学 增采样 人工智能 分割 特征(语言学) 图像分割 模式识别(心理学) 深度学习 卷积神经网络 卷积(计算机科学) 基于分割的对象分类 尺度空间分割 舌头 像素 编码器 图像(数学) 计算机视觉 算法 人工神经网络 操作系统 哲学 语言学
作者
Chang Tian,Yanjung Liu,Meng Li,Chaofan Fen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (1): 1473-1480
标识
DOI:10.3233/jifs-221411
摘要

The key step in the intelligence of tongue diagnosis is the segmentation of the tongue image, and the accuracy of the segmented edges has a significant impact on the subsequent medical judgment. Deep learning can predict the class of pixel points to achieve pixel-level segmentation of images, so it can be used to handle tongue segmentation tasks. However, different models have different segmentation effects, and they did not learn the connection between space and channels, resulting in inaccurate tongue segmentation. This paper first discussed the choice of model and loss function and then compared the results of different options to find the better model. Associating the red feature of the tongue is very conducive to segmentation as a feature, this paper tested many methods to try to get the color features of the original image to be paid attention to. Finally, this paper proposed an improved Encoder-Decoder network model to solve the problem based on the results. Start with Resnet as the backbone network, then introduce the U-Net model, and then we fused the attention layer, obtained from the source image through convolution and CBAM attention mechanism, and the feature layer obtained from the last upsampling in U-Net. Experimental results show that: The new, improved algorithm results are 2-3 percentage points higher than the popular algorithm, making it more suitable for tongue segmentation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
轻松囧完成签到,获得积分20
刚刚
刚刚
hooke发布了新的文献求助10
1秒前
高飞完成签到,获得积分10
1秒前
852应助nkmenghan采纳,获得10
1秒前
Cheng发布了新的文献求助10
1秒前
bling发布了新的文献求助10
1秒前
何小芳完成签到,获得积分10
1秒前
HHH发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
今后应助微笑无敌瑶采纳,获得10
3秒前
3秒前
酷钱完成签到 ,获得积分10
3秒前
FashionBoy应助zyyy采纳,获得10
3秒前
昼夜本色发布了新的文献求助10
3秒前
李健的小迷弟应助药小博采纳,获得10
3秒前
彭于晏应助清晨杨采纳,获得10
3秒前
4秒前
4秒前
丘比特应助轻松囧采纳,获得10
4秒前
火速上前线完成签到,获得积分10
4秒前
seed85发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
龟龟发布了新的文献求助10
6秒前
even应助文件撤销了驳回
7秒前
osneiogn完成签到,获得积分10
7秒前
7秒前
爱吃饼干的土拨鼠完成签到,获得积分10
7秒前
7秒前
VC发布了新的文献求助10
8秒前
香蕉觅云应助温暖的鸿采纳,获得10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807