Tongue image segmentation algorithm based on deep convolutional neural network and attention mechanism

计算机科学 增采样 人工智能 分割 特征(语言学) 图像分割 模式识别(心理学) 深度学习 卷积神经网络 卷积(计算机科学) 基于分割的对象分类 尺度空间分割 舌头 像素 编码器 图像(数学) 计算机视觉 算法 人工神经网络 操作系统 哲学 语言学
作者
Chang Tian,Yanjung Liu,Meng Li,Chaofan Fen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (1): 1473-1480
标识
DOI:10.3233/jifs-221411
摘要

The key step in the intelligence of tongue diagnosis is the segmentation of the tongue image, and the accuracy of the segmented edges has a significant impact on the subsequent medical judgment. Deep learning can predict the class of pixel points to achieve pixel-level segmentation of images, so it can be used to handle tongue segmentation tasks. However, different models have different segmentation effects, and they did not learn the connection between space and channels, resulting in inaccurate tongue segmentation. This paper first discussed the choice of model and loss function and then compared the results of different options to find the better model. Associating the red feature of the tongue is very conducive to segmentation as a feature, this paper tested many methods to try to get the color features of the original image to be paid attention to. Finally, this paper proposed an improved Encoder-Decoder network model to solve the problem based on the results. Start with Resnet as the backbone network, then introduce the U-Net model, and then we fused the attention layer, obtained from the source image through convolution and CBAM attention mechanism, and the feature layer obtained from the last upsampling in U-Net. Experimental results show that: The new, improved algorithm results are 2-3 percentage points higher than the popular algorithm, making it more suitable for tongue segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助SEV采纳,获得10
1秒前
猫猫睡觉觉完成签到,获得积分10
3秒前
NexusExplorer应助研友_Zlx3aZ采纳,获得10
4秒前
Aks发布了新的文献求助10
4秒前
Lucas应助hhh采纳,获得10
5秒前
5秒前
赘婿应助满意的又蓝采纳,获得10
5秒前
科目三应助林林总总采纳,获得10
8秒前
神勇金毛完成签到,获得积分10
9秒前
9秒前
10秒前
666完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
罐罐儿应助han采纳,获得10
14秒前
15秒前
16秒前
666发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
泠空完成签到 ,获得积分10
17秒前
Aks完成签到,获得积分10
19秒前
大海发布了新的文献求助10
21秒前
泠空关注了科研通微信公众号
21秒前
22秒前
淡定沧海完成签到 ,获得积分10
23秒前
蓝莓关注了科研通微信公众号
23秒前
Sodium发布了新的文献求助10
23秒前
23秒前
25秒前
25秒前
25秒前
yeyeye完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
nnn发布了新的文献求助10
28秒前
29秒前
丘比特应助冷艳的火龙果采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4579152
求助须知:如何正确求助?哪些是违规求助? 3997646
关于积分的说明 12376196
捐赠科研通 3671974
什么是DOI,文献DOI怎么找? 2023661
邀请新用户注册赠送积分活动 1057695
科研通“疑难数据库(出版商)”最低求助积分说明 944525