Tongue image segmentation algorithm based on deep convolutional neural network and attention mechanism

计算机科学 增采样 人工智能 分割 特征(语言学) 图像分割 模式识别(心理学) 深度学习 卷积神经网络 卷积(计算机科学) 基于分割的对象分类 尺度空间分割 舌头 像素 编码器 图像(数学) 计算机视觉 算法 人工神经网络 操作系统 哲学 语言学
作者
Chang Tian,Yanjung Liu,Meng Li,Chaofan Fen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (1): 1473-1480
标识
DOI:10.3233/jifs-221411
摘要

The key step in the intelligence of tongue diagnosis is the segmentation of the tongue image, and the accuracy of the segmented edges has a significant impact on the subsequent medical judgment. Deep learning can predict the class of pixel points to achieve pixel-level segmentation of images, so it can be used to handle tongue segmentation tasks. However, different models have different segmentation effects, and they did not learn the connection between space and channels, resulting in inaccurate tongue segmentation. This paper first discussed the choice of model and loss function and then compared the results of different options to find the better model. Associating the red feature of the tongue is very conducive to segmentation as a feature, this paper tested many methods to try to get the color features of the original image to be paid attention to. Finally, this paper proposed an improved Encoder-Decoder network model to solve the problem based on the results. Start with Resnet as the backbone network, then introduce the U-Net model, and then we fused the attention layer, obtained from the source image through convolution and CBAM attention mechanism, and the feature layer obtained from the last upsampling in U-Net. Experimental results show that: The new, improved algorithm results are 2-3 percentage points higher than the popular algorithm, making it more suitable for tongue segmentation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助一个西藏采纳,获得10
1秒前
1秒前
铁塔凌云完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助freesialll采纳,获得10
3秒前
3秒前
背后寒烟发布了新的文献求助10
4秒前
4秒前
4秒前
wanci应助sanjun采纳,获得10
6秒前
6秒前
6秒前
烟花应助能干水杯采纳,获得10
7秒前
7秒前
big ben完成签到 ,获得积分0
8秒前
8秒前
情怀应助siriuslee99采纳,获得10
9秒前
雪意发布了新的文献求助10
9秒前
10秒前
小魏发布了新的文献求助10
10秒前
王柯予发布了新的文献求助10
11秒前
sera发布了新的文献求助10
11秒前
心碎的黄焖鸡完成签到 ,获得积分10
12秒前
小椰喃喃完成签到,获得积分10
12秒前
12秒前
平淡的绮彤完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
小马甲应助沉静胜采纳,获得10
14秒前
pihriyyy完成签到,获得积分10
16秒前
qss8807发布了新的文献求助10
16秒前
金木应助无私小猫咪采纳,获得10
16秒前
17秒前
siriuslee99完成签到,获得积分10
18秒前
宋子涵完成签到 ,获得积分10
18秒前
king发布了新的文献求助10
18秒前
顾矜应助77采纳,获得10
18秒前
能干水杯发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858