🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

FVFSNet: Frequency-Spatial Coupling Network for Finger Vein Authentication

计算机科学 频域 卷积(计算机科学) 人工智能 特征提取 模式识别(心理学) 空间频率 领域(数学分析) 计算机视觉 光学 物理 数学 人工神经网络 数学分析
作者
Junduan Huang,An Zheng,M. Saad Shakeel,Weili Yang,Wenxiong Kang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1322-1334 被引量:26
标识
DOI:10.1109/tifs.2023.3238546
摘要

Finger vein biometrics is becoming an important source of human authentication due to its advantages in terms of liveness detection, high security, and user convenience. Although there exist a lot of deep learning-based methods for finger vein authentication, they only extract features from finger vein images in the spatial domain and may lose some important information that is present in other domains, such as the frequency domain. Motivated by this conjecture and the remarkable performance of image feature extraction in the frequency domain, this work explores a method capable of extracting finger vein features in both the spatial and frequency domains. Therefore, the features extracted from different domains can complement each other. In addition, we propose a novel frequency-spatial coupling network (FVFSNet) for finger vein authentication. FVFSNet is mainly composed of three parts: (1) the frequency domain processing module (FDPM), (2) the spatial domain processing module (SDPM), and (3) the frequency-spatial coupling module (FSCM). The FDPM is used to extract the finger vein features present in the frequency domain, which is mainly composed of the frequency-spatial domain transformation and the frequency domain convolution layer. The SDPM is used to extract the finger vein features present in the spatial domain, which is mainly composed of convolution layers with an efficient design. The FSCM is used to couple the features extracted from the FDPM and SDPM, which is mainly composed of the channel and spatial attention mechanisms. To validate our conjecture and the performances of FVFSNet, extensive experiments are conducted on nine commonly used publicly available finger vein datasets. Experimental results show that the frequency domain constitutional neural network has a surprising effect on finger vein authentication, and the proposed FVFSNet achieves the state-of-the-art performance with the advantages of lightweight and low computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
1秒前
123456完成签到 ,获得积分10
1秒前
2秒前
Wuwuwu完成签到 ,获得积分10
2秒前
golden完成签到,获得积分10
3秒前
cyy1226完成签到,获得积分10
3秒前
win完成签到 ,获得积分10
5秒前
5秒前
pb完成签到 ,获得积分10
5秒前
有机分子笼完成签到,获得积分10
6秒前
赵田发布了新的文献求助10
6秒前
Orange应助杏子采纳,获得10
7秒前
机智灵薇完成签到,获得积分10
9秒前
Neo完成签到,获得积分10
10秒前
稳重的从灵完成签到,获得积分10
11秒前
雪泥鸿爪完成签到,获得积分20
11秒前
11秒前
11秒前
Hindiii完成签到,获得积分10
12秒前
圆球球完成签到 ,获得积分10
12秒前
彭于晏应助feng采纳,获得10
12秒前
研友_VZG7GZ应助wuhen采纳,获得10
14秒前
FashionBoy应助Splaink采纳,获得10
16秒前
luria完成签到,获得积分10
17秒前
18秒前
雪泥鸿爪发布了新的文献求助30
19秒前
纯真涵菱完成签到 ,获得积分10
20秒前
byyyy发布了新的文献求助10
21秒前
www发布了新的文献求助10
21秒前
但大图完成签到 ,获得积分10
22秒前
gy发布了新的文献求助30
23秒前
十三完成签到,获得积分10
23秒前
秦小狸完成签到 ,获得积分10
23秒前
斯文败类应助gdh采纳,获得10
23秒前
25秒前
25秒前
芬芬完成签到,获得积分10
25秒前
zzy完成签到 ,获得积分10
25秒前
伟立完成签到,获得积分10
26秒前
Ava应助曲奇饼干采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Comprehensive Computational Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3604275
求助须知:如何正确求助?哪些是违规求助? 3172354
关于积分的说明 9573976
捐赠科研通 2878427
什么是DOI,文献DOI怎么找? 1580926
邀请新用户注册赠送积分活动 743285
科研通“疑难数据库(出版商)”最低求助积分说明 725901