Cooperative UAV Resource Allocation and Task Offloading in Hierarchical Aerial Computing Systems: A MAPPO-Based Approach

计算机科学 分布式计算 资源配置 资源管理(计算) 任务(项目管理) 处理器调度 资源(消歧) 实时计算 计算机网络 经济 管理
作者
Hongyue Kang,Xiaolin Chang,Jelena Mišić,Vojislav B. Mišić,Junchao Fan,Yating Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (12): 10497-10509 被引量:24
标识
DOI:10.1109/jiot.2023.3240173
摘要

This article investigates a hierarchical aerial computing system, where both high-altitude platforms (HAPs) and unmanned aerial vehicles (UAVs) provision computation services for ground devices (GDs). Different from the existing works which ignored UAV task offloading to HAPs and suffered long transmission delay between HAPs and GDs, in our system, UAVs are responsible for collecting the tasks generated by GDs. Considering limited resources and constrained coverage, UAVs need to cooperatively allocate their resources (including spectrum, caching, and computing) to GDs. After collecting GD tasks, UAVs are allowed to offload part of these tasks to the HAP, in order to minimize task processing delay and then better satisfy GD delay requirement. Our objective is to maximize the amount of computed tasks while satisfying tasks' heterogeneous Quality-of-Service (QoS) requirements through the joint optimization of UAV resource allocation and task offloading. To this end, a joint optimization problem is first formulated as a partially observable Markov decision process (POMDP) under the constraints of available resources, UAV energy, and collision avoidance. Then, we design a multiagent proximal policy optimization (MAPPO)-based algorithm to solve the optimization problem. By introducing the centralized training with decentralized execution framework, UAVs acting as agents can cooperatively make decisions on GDs association, resource allocation, and task offloading according to their local observations. In addition, state normalization and action mask are also adopted to improve training efficiency. Experimental results verify the efficiency of the proposed algorithm and the system performance is also analyzed by the numerical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
百合骑士发布了新的文献求助10
1秒前
田様应助a简很忙采纳,获得10
1秒前
笑笑完成签到,获得积分20
2秒前
李大力发布了新的文献求助10
2秒前
Jsc完成签到 ,获得积分10
3秒前
3秒前
ZXF完成签到,获得积分20
4秒前
su完成签到 ,获得积分10
4秒前
打打应助努力向上的小刘采纳,获得10
4秒前
多情天奇应助wss采纳,获得10
5秒前
吉吉米米发布了新的文献求助10
5秒前
李健应助不吃芹菜谢谢采纳,获得30
6秒前
7秒前
LINHAI发布了新的文献求助10
8秒前
自己完成签到,获得积分10
9秒前
10秒前
Billy应助科研通管家采纳,获得30
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
笑笑驳回了Orange应助
12秒前
司空豁应助科研通管家采纳,获得10
12秒前
Billy应助科研通管家采纳,获得30
12秒前
12秒前
Lucas应助ZXF采纳,获得10
12秒前
张益萌应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
司空豁应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
司空豁应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
勤劳的灰狼完成签到,获得积分10
13秒前
13秒前
笔记本应助兔兔sci采纳,获得150
13秒前
14秒前
LINHAI完成签到,获得积分10
14秒前
陈法国发布了新的文献求助10
16秒前
咳咳咳发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302000
求助须知:如何正确求助?哪些是违规求助? 2936552
关于积分的说明 8477981
捐赠科研通 2610247
什么是DOI,文献DOI怎么找? 1425064
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646456