Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer

稳定器(航空) 计算机科学 算法 优化算法 功率(物理) 数学优化 数学 工程类 量子力学 机械工程 物理
作者
Václav Snåšel,Rizk M. Rizk‐Allah,Davut İzci,Serdar Ekinci
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:136: 110085-110085 被引量:39
标识
DOI:10.1016/j.asoc.2023.110085
摘要

Accurate design of the power system stabilizer (PSS) models is a crucial issue due to their significant impact on the stability of power system operation. However, identifying the parameters of a PSS model is a challenging task owing to its nonlinearity and multi-modality characteristics. Due to such characteristics, handling algorithms may be prone to stagnation in local optima. Therefore, this paper proposes a potent integrated optimization algorithm by comprising the weIghted meaN oF vectOrs (INFO) optimizer with chaotic-orthogonal based learning (COBL) and Gaussian bare-bones (GBB) strategies, named INFO-GBB, for achieving the optimal parameters of a PSS model used in a single-machine infinite-bus (SMIB) system. In the INFO-GBB, the COBL aims to enhance the searching capability to explore new regions using the orthogonal design aspect and thus improving the diversity of solutions. Also, the GBB is adopted to assist the algorithm to perform an immediate vicinity of the best solution and thus enhances the exploitation capabilities. The effectiveness and efficacy of the INFO-GBB algorithm is validated on CEC 2020 benchmark suits and the designing task of the PSS model. The achieved results by the INFO-GBB are compared with eighteen well-known algorithms. The statistical verifications along with the Friedman test have ascertained that the INFO-GBB is capable of achieving promising performances compared to the other counterparts. The results obtained based on the Friedman test illustrate that the INFO-GBB offers superior performance over the state-of-the-art algorithms as it outperforms fifteen out of eighteen algorithms by an average rank greater than 61% for benchmark problems while outperforming O-LSHADE, LSHADE, and TSA algorithms by 25%,33%, and 58%, respectively. Furthermore, the applicability of the INFO-GBB is realized through designing the PSS model used in a SMIB system. The obtained results indicate that the INFO-GBB algorithm exhibits accurate and superior performance compared to other peers as it provides the lowest value for the integral of time multiplied absolute error (ITAE) performance index which is used as an objective function. For example, the achieved results of the mean ITAE found by INFO-GBB is 1.36E−03 with improvement percentages of 24.93%, 19.78%, 13.04%, 26.64%, and 24.86%, over the LSHADE, GWO, EO, RSA, and original INFO algorithms, respectively. Therefore, the INFO-GBB can efficiently affirm its superiority and stability to deal with the function optimization task and parameters’ estimation of the PSS model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的靖发布了新的文献求助10
1秒前
1秒前
兔子发布了新的文献求助10
1秒前
weizhao发布了新的文献求助10
1秒前
Lucas应助农瑞金采纳,获得10
2秒前
chris chen发布了新的文献求助10
2秒前
隐形曼青应助xh采纳,获得10
2秒前
3秒前
3秒前
Ava应助烤鸭本鸭采纳,获得10
3秒前
3秒前
3秒前
罗劲松完成签到,获得积分10
4秒前
科研F5完成签到,获得积分10
4秒前
诚c发布了新的文献求助10
4秒前
李吉祥完成签到,获得积分10
4秒前
大个应助whitexue采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
wanci应助阿琛采纳,获得10
5秒前
只爱LJT发布了新的文献求助10
6秒前
wxx发布了新的文献求助10
6秒前
6秒前
搞怪代荷完成签到,获得积分10
6秒前
洛洛完成签到,获得积分10
6秒前
研究啥完成签到,获得积分10
7秒前
7秒前
7秒前
灵性书童发布了新的文献求助10
8秒前
徐佳乐发布了新的文献求助10
8秒前
8秒前
Jasper应助典雅的俊驰采纳,获得10
8秒前
乐观完成签到,获得积分10
8秒前
上官若男应助lijiaqi采纳,获得10
9秒前
9秒前
9秒前
将个烂就完成签到,获得积分10
9秒前
炙热忆枫应助合适惊蛰采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454