Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer

稳定器(航空) 计算机科学 算法 优化算法 功率(物理) 数学优化 数学 工程类 物理 量子力学 机械工程
作者
Václav Snåšel,Rizk M. Rizk‐Allah,Davut İzci,Serdar Ekinci
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110085-110085 被引量:39
标识
DOI:10.1016/j.asoc.2023.110085
摘要

Accurate design of the power system stabilizer (PSS) models is a crucial issue due to their significant impact on the stability of power system operation. However, identifying the parameters of a PSS model is a challenging task owing to its nonlinearity and multi-modality characteristics. Due to such characteristics, handling algorithms may be prone to stagnation in local optima. Therefore, this paper proposes a potent integrated optimization algorithm by comprising the weIghted meaN oF vectOrs (INFO) optimizer with chaotic-orthogonal based learning (COBL) and Gaussian bare-bones (GBB) strategies, named INFO-GBB, for achieving the optimal parameters of a PSS model used in a single-machine infinite-bus (SMIB) system. In the INFO-GBB, the COBL aims to enhance the searching capability to explore new regions using the orthogonal design aspect and thus improving the diversity of solutions. Also, the GBB is adopted to assist the algorithm to perform an immediate vicinity of the best solution and thus enhances the exploitation capabilities. The effectiveness and efficacy of the INFO-GBB algorithm is validated on CEC 2020 benchmark suits and the designing task of the PSS model. The achieved results by the INFO-GBB are compared with eighteen well-known algorithms. The statistical verifications along with the Friedman test have ascertained that the INFO-GBB is capable of achieving promising performances compared to the other counterparts. The results obtained based on the Friedman test illustrate that the INFO-GBB offers superior performance over the state-of-the-art algorithms as it outperforms fifteen out of eighteen algorithms by an average rank greater than 61% for benchmark problems while outperforming O-LSHADE, LSHADE, and TSA algorithms by 25%,33%, and 58%, respectively. Furthermore, the applicability of the INFO-GBB is realized through designing the PSS model used in a SMIB system. The obtained results indicate that the INFO-GBB algorithm exhibits accurate and superior performance compared to other peers as it provides the lowest value for the integral of time multiplied absolute error (ITAE) performance index which is used as an objective function. For example, the achieved results of the mean ITAE found by INFO-GBB is 1.36E−03 with improvement percentages of 24.93%, 19.78%, 13.04%, 26.64%, and 24.86%, over the LSHADE, GWO, EO, RSA, and original INFO algorithms, respectively. Therefore, the INFO-GBB can efficiently affirm its superiority and stability to deal with the function optimization task and parameters’ estimation of the PSS model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdzylx7发布了新的文献求助10
刚刚
ainan发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
3秒前
懿懿发布了新的文献求助10
3秒前
5秒前
去燕麦完成签到 ,获得积分10
6秒前
DH完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
9秒前
Ava应助CMUSK采纳,获得20
10秒前
10秒前
11秒前
YunZeng完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Lin完成签到,获得积分10
15秒前
脑洞疼应助SHY采纳,获得10
16秒前
韩子云完成签到,获得积分20
16秒前
bow完成签到 ,获得积分10
16秒前
18秒前
18秒前
微微发布了新的文献求助10
20秒前
织安完成签到,获得积分10
21秒前
21秒前
rui发布了新的文献求助10
21秒前
冬aa发布了新的文献求助10
21秒前
爆米花应助韩子云采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
Apricity发布了新的文献求助10
23秒前
勤劳的白晴完成签到,获得积分10
24秒前
MoMo发布了新的文献求助10
24秒前
懒洋洋完成签到 ,获得积分20
24秒前
默默向雪完成签到,获得积分0
25秒前
梁三柏应助白小黑采纳,获得10
25秒前
在水一方应助...采纳,获得10
25秒前
25秒前
Flins完成签到 ,获得积分10
26秒前
菠菜发布了新的文献求助100
27秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749517
求助须知:如何正确求助?哪些是违规求助? 5459212
关于积分的说明 15363842
捐赠科研通 4888951
什么是DOI,文献DOI怎么找? 2628829
邀请新用户注册赠送积分活动 1577110
关于科研通互助平台的介绍 1533774