Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer

稳定器(航空) 计算机科学 算法 优化算法 功率(物理) 数学优化 数学 工程类 物理 量子力学 机械工程
作者
Václav Snåšel,Rizk M. Rizk‐Allah,Davut İzci,Serdar Ekinci
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110085-110085 被引量:39
标识
DOI:10.1016/j.asoc.2023.110085
摘要

Accurate design of the power system stabilizer (PSS) models is a crucial issue due to their significant impact on the stability of power system operation. However, identifying the parameters of a PSS model is a challenging task owing to its nonlinearity and multi-modality characteristics. Due to such characteristics, handling algorithms may be prone to stagnation in local optima. Therefore, this paper proposes a potent integrated optimization algorithm by comprising the weIghted meaN oF vectOrs (INFO) optimizer with chaotic-orthogonal based learning (COBL) and Gaussian bare-bones (GBB) strategies, named INFO-GBB, for achieving the optimal parameters of a PSS model used in a single-machine infinite-bus (SMIB) system. In the INFO-GBB, the COBL aims to enhance the searching capability to explore new regions using the orthogonal design aspect and thus improving the diversity of solutions. Also, the GBB is adopted to assist the algorithm to perform an immediate vicinity of the best solution and thus enhances the exploitation capabilities. The effectiveness and efficacy of the INFO-GBB algorithm is validated on CEC 2020 benchmark suits and the designing task of the PSS model. The achieved results by the INFO-GBB are compared with eighteen well-known algorithms. The statistical verifications along with the Friedman test have ascertained that the INFO-GBB is capable of achieving promising performances compared to the other counterparts. The results obtained based on the Friedman test illustrate that the INFO-GBB offers superior performance over the state-of-the-art algorithms as it outperforms fifteen out of eighteen algorithms by an average rank greater than 61% for benchmark problems while outperforming O-LSHADE, LSHADE, and TSA algorithms by 25%,33%, and 58%, respectively. Furthermore, the applicability of the INFO-GBB is realized through designing the PSS model used in a SMIB system. The obtained results indicate that the INFO-GBB algorithm exhibits accurate and superior performance compared to other peers as it provides the lowest value for the integral of time multiplied absolute error (ITAE) performance index which is used as an objective function. For example, the achieved results of the mean ITAE found by INFO-GBB is 1.36E−03 with improvement percentages of 24.93%, 19.78%, 13.04%, 26.64%, and 24.86%, over the LSHADE, GWO, EO, RSA, and original INFO algorithms, respectively. Therefore, the INFO-GBB can efficiently affirm its superiority and stability to deal with the function optimization task and parameters’ estimation of the PSS model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言成完成签到 ,获得积分10
2秒前
2秒前
刘柳完成签到 ,获得积分10
2秒前
Stageruner完成签到,获得积分10
2秒前
nonoNOSHEEP完成签到,获得积分10
7秒前
8秒前
VV发布了新的文献求助10
9秒前
无私尔风完成签到,获得积分10
9秒前
9秒前
HollidayLee完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
13秒前
13秒前
奥沙利楠发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
周同学发布了新的文献求助10
16秒前
张天翔发布了新的文献求助10
17秒前
老实的大楚完成签到,获得积分10
17秒前
NexusExplorer应助甜甜凡蕾采纳,获得10
19秒前
活力雁枫发布了新的文献求助10
20秒前
feng完成签到,获得积分10
21秒前
小二郎应助lalala采纳,获得10
22秒前
小蘑菇应助袁妞妞采纳,获得10
22秒前
周同学完成签到,获得积分10
22秒前
Cc关闭了Cc文献求助
23秒前
23秒前
懵懂的紫萍完成签到 ,获得积分10
24秒前
研友_ZAxX6n完成签到,获得积分10
24秒前
密密麻麻M完成签到,获得积分10
25秒前
25秒前
包凡之发布了新的文献求助10
25秒前
万能图书馆应助LL采纳,获得10
25秒前
xin完成签到,获得积分10
28秒前
南宫秃完成签到,获得积分10
30秒前
30秒前
帅气书白发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112