Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer

稳定器(航空) 计算机科学 算法 优化算法 功率(物理) 数学优化 数学 工程类 量子力学 机械工程 物理
作者
Václav Snåšel,Rizk M. Rizk‐Allah,Davut İzci,Serdar Ekinci
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110085-110085 被引量:39
标识
DOI:10.1016/j.asoc.2023.110085
摘要

Accurate design of the power system stabilizer (PSS) models is a crucial issue due to their significant impact on the stability of power system operation. However, identifying the parameters of a PSS model is a challenging task owing to its nonlinearity and multi-modality characteristics. Due to such characteristics, handling algorithms may be prone to stagnation in local optima. Therefore, this paper proposes a potent integrated optimization algorithm by comprising the weIghted meaN oF vectOrs (INFO) optimizer with chaotic-orthogonal based learning (COBL) and Gaussian bare-bones (GBB) strategies, named INFO-GBB, for achieving the optimal parameters of a PSS model used in a single-machine infinite-bus (SMIB) system. In the INFO-GBB, the COBL aims to enhance the searching capability to explore new regions using the orthogonal design aspect and thus improving the diversity of solutions. Also, the GBB is adopted to assist the algorithm to perform an immediate vicinity of the best solution and thus enhances the exploitation capabilities. The effectiveness and efficacy of the INFO-GBB algorithm is validated on CEC 2020 benchmark suits and the designing task of the PSS model. The achieved results by the INFO-GBB are compared with eighteen well-known algorithms. The statistical verifications along with the Friedman test have ascertained that the INFO-GBB is capable of achieving promising performances compared to the other counterparts. The results obtained based on the Friedman test illustrate that the INFO-GBB offers superior performance over the state-of-the-art algorithms as it outperforms fifteen out of eighteen algorithms by an average rank greater than 61% for benchmark problems while outperforming O-LSHADE, LSHADE, and TSA algorithms by 25%,33%, and 58%, respectively. Furthermore, the applicability of the INFO-GBB is realized through designing the PSS model used in a SMIB system. The obtained results indicate that the INFO-GBB algorithm exhibits accurate and superior performance compared to other peers as it provides the lowest value for the integral of time multiplied absolute error (ITAE) performance index which is used as an objective function. For example, the achieved results of the mean ITAE found by INFO-GBB is 1.36E−03 with improvement percentages of 24.93%, 19.78%, 13.04%, 26.64%, and 24.86%, over the LSHADE, GWO, EO, RSA, and original INFO algorithms, respectively. Therefore, the INFO-GBB can efficiently affirm its superiority and stability to deal with the function optimization task and parameters’ estimation of the PSS model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿叶小檗发布了新的文献求助20
1秒前
裴仰纳发布了新的文献求助10
1秒前
Izzy发布了新的文献求助10
1秒前
1秒前
善学以致用应助Daisy采纳,获得10
2秒前
飘逸的苡完成签到,获得积分10
2秒前
2秒前
2秒前
幸福小海豚完成签到,获得积分10
2秒前
2秒前
现代苑睐完成签到,获得积分10
3秒前
武昊天完成签到,获得积分20
3秒前
思源应助干净的寄风采纳,获得30
3秒前
文欣妍完成签到,获得积分10
3秒前
东1991发布了新的文献求助10
4秒前
旺哥完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
所所应助不安的晓灵采纳,获得10
5秒前
夏紊发布了新的文献求助10
5秒前
ddk发布了新的文献求助10
5秒前
Singularity应助zml采纳,获得10
6秒前
6秒前
lo发布了新的文献求助50
6秒前
阳光萌萌完成签到,获得积分10
6秒前
6秒前
棋士发布了新的文献求助10
6秒前
山岗落月发布了新的文献求助10
7秒前
asang完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
bu才发布了新的文献求助10
8秒前
9秒前
9秒前
无花果应助贪玩心情采纳,获得10
9秒前
9秒前
9秒前
zxr发布了新的文献求助10
9秒前
zyiyi完成签到,获得积分10
9秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271