Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer

稳定器(航空) 计算机科学 算法 优化算法 功率(物理) 数学优化 数学 工程类 量子力学 机械工程 物理
作者
Václav Snåšel,Rizk M. Rizk‐Allah,Davut İzci,Serdar Ekinci
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:136: 110085-110085 被引量:39
标识
DOI:10.1016/j.asoc.2023.110085
摘要

Accurate design of the power system stabilizer (PSS) models is a crucial issue due to their significant impact on the stability of power system operation. However, identifying the parameters of a PSS model is a challenging task owing to its nonlinearity and multi-modality characteristics. Due to such characteristics, handling algorithms may be prone to stagnation in local optima. Therefore, this paper proposes a potent integrated optimization algorithm by comprising the weIghted meaN oF vectOrs (INFO) optimizer with chaotic-orthogonal based learning (COBL) and Gaussian bare-bones (GBB) strategies, named INFO-GBB, for achieving the optimal parameters of a PSS model used in a single-machine infinite-bus (SMIB) system. In the INFO-GBB, the COBL aims to enhance the searching capability to explore new regions using the orthogonal design aspect and thus improving the diversity of solutions. Also, the GBB is adopted to assist the algorithm to perform an immediate vicinity of the best solution and thus enhances the exploitation capabilities. The effectiveness and efficacy of the INFO-GBB algorithm is validated on CEC 2020 benchmark suits and the designing task of the PSS model. The achieved results by the INFO-GBB are compared with eighteen well-known algorithms. The statistical verifications along with the Friedman test have ascertained that the INFO-GBB is capable of achieving promising performances compared to the other counterparts. The results obtained based on the Friedman test illustrate that the INFO-GBB offers superior performance over the state-of-the-art algorithms as it outperforms fifteen out of eighteen algorithms by an average rank greater than 61% for benchmark problems while outperforming O-LSHADE, LSHADE, and TSA algorithms by 25%,33%, and 58%, respectively. Furthermore, the applicability of the INFO-GBB is realized through designing the PSS model used in a SMIB system. The obtained results indicate that the INFO-GBB algorithm exhibits accurate and superior performance compared to other peers as it provides the lowest value for the integral of time multiplied absolute error (ITAE) performance index which is used as an objective function. For example, the achieved results of the mean ITAE found by INFO-GBB is 1.36E−03 with improvement percentages of 24.93%, 19.78%, 13.04%, 26.64%, and 24.86%, over the LSHADE, GWO, EO, RSA, and original INFO algorithms, respectively. Therefore, the INFO-GBB can efficiently affirm its superiority and stability to deal with the function optimization task and parameters’ estimation of the PSS model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵振家发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
lh完成签到,获得积分10
1秒前
烟花应助Xiaopan采纳,获得10
1秒前
科研顺利完成签到,获得积分20
1秒前
Jade完成签到,获得积分10
1秒前
bkagyin应助受伤幻桃采纳,获得10
2秒前
青秋鱼罐头完成签到,获得积分10
2秒前
huahua完成签到,获得积分10
2秒前
chinh完成签到,获得积分10
2秒前
UGO发布了新的文献求助10
3秒前
joeking完成签到 ,获得积分10
3秒前
金咪完成签到,获得积分20
3秒前
wuwuhu完成签到,获得积分10
4秒前
柠檬不萌完成签到,获得积分20
4秒前
fangang发布了新的文献求助30
5秒前
maclogos发布了新的文献求助10
5秒前
shmorby完成签到,获得积分10
5秒前
陈一一完成签到,获得积分10
5秒前
6秒前
6秒前
zyt完成签到,获得积分10
6秒前
yangxt-iga发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
ytunnut发布了新的文献求助10
7秒前
7秒前
桐桐应助huahua采纳,获得10
7秒前
所所应助细腻亦巧采纳,获得10
7秒前
7秒前
没有花活儿完成签到,获得积分10
7秒前
Jiabao完成签到,获得积分10
8秒前
9秒前
9秒前
华仔应助普鲁卡因采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997