Comparative life cycle greenhouse gas emissions assessment of battery energy storage technologies for grid applications

温室气体 环境科学 可再生能源 生命周期评估 储能 商业化 电网储能 环境工程 光伏系统 废物管理 工程类 分布式发电 业务 生产(经济) 电气工程 生物 物理 宏观经济学 经济 营销 功率(物理) 量子力学 生态学
作者
Xiaoqu Han,Yanxin Li,Lu Nie,Xiaofan Huang,Yelin Deng,Junjie Yan,Dimitrios‐Sotirios Kourkoumpas,Sotiriοs Karellas
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:392: 136251-136251 被引量:50
标识
DOI:10.1016/j.jclepro.2023.136251
摘要

With an ever-increasing penetration of renewable energy sources into the power grid, the development and commercialization of large-scale energy storage systems (ESSs) have been enforced. It is imperative to evaluate the environmental sustainability of ESSs in grid applications to achieve sustainable development goals. In the present work, a cradle-to-grave life cycle analysis model, which incorporates the manufacturing, usage, and recycling processes, was developed for prominent electrochemical energy storage technologies, including lithium iron phosphate batteries (LIPBs), nickel cobalt manganese oxide batteries (NCMBs), and vanadium redox flow batteries (VRFBs). A case study was conducted based on per MWh of energy stored. The greenhouse gas (GHG) emissions of LIPBs, NCMBs, and VRFBs under the Chinese electrical grid peak-shaving scenario were determined to be 323, 263, and 425 kg CO2-eq/MWh, respectively. The key components contributing to the GHG emissions were identified. The GHG emissions of different batteries in renewable energy sources (photovoltaic and wind) were evaluated. Moreover, the GHG emissions under the future electricity mixes were predicted according to the carbon peaking and carbon neutrality goals. The GHG emissions of LIPBs, NCMBs, and VRFBs under the Announced Pledges Scenario could be reduced by approximately 23–27% in 2030 and 66–75% in 2050. Moreover, sensitivity analysis was performed, indicating that the GHG emissions were directly linked with the round-trip efficiency. The results could promote the environment, policy, and business model optimization efforts for large-scale energy storage in low-carbon power systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quasar完成签到,获得积分10
刚刚
耍酷天寿发布了新的文献求助10
刚刚
hyee1关注了科研通微信公众号
刚刚
完美世界应助jzt12138采纳,获得10
刚刚
Hello应助XT采纳,获得10
1秒前
1秒前
kingwill举报小齐爱科研求助涉嫌违规
1秒前
NN发布了新的文献求助10
2秒前
淡然凤完成签到,获得积分10
2秒前
大模型应助小比熊采纳,获得10
2秒前
情怀应助严昌采纳,获得10
2秒前
3秒前
美好初晴发布了新的文献求助10
4秒前
我要发一刊完成签到 ,获得积分10
4秒前
小慧儿完成签到 ,获得积分10
5秒前
5秒前
Mico发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6666应助小白采纳,获得10
6秒前
田様应助谨慎的寒松采纳,获得10
7秒前
科目三应助谨慎的寒松采纳,获得10
7秒前
丘比特应助谨慎的寒松采纳,获得30
7秒前
情怀应助谨慎的寒松采纳,获得10
8秒前
Orange应助谨慎的寒松采纳,获得10
8秒前
酷波er应助谨慎的寒松采纳,获得10
8秒前
8秒前
所所应助谨慎的寒松采纳,获得10
8秒前
情怀应助谨慎的寒松采纳,获得10
8秒前
上官若男应助谨慎的寒松采纳,获得10
8秒前
科研通AI6.1应助翟翟采纳,获得10
8秒前
科研通AI6.1应助翟翟采纳,获得10
8秒前
滕祥给滕祥的求助进行了留言
9秒前
9秒前
killer发布了新的文献求助10
9秒前
10秒前
10秒前
YM完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108