Graph Neural Networks with Interlayer Feature Representation for Image Super-Resolution

计算机科学 特征学习 卷积神经网络 特征(语言学) 人工智能 模式识别(心理学) 代表(政治) 图形 图像(数学) 人工神经网络 光学(聚焦) 特征提取 深度学习 理论计算机科学 光学 物理 法学 政治学 政治 语言学 哲学
作者
Shenggui Tang,Kaixuan Yao,Jianqing Liang,Zhiqiang Wang,Jiye Liang
标识
DOI:10.1145/3539597.3570436
摘要

Although deep learning has been extensively studied and achieved remarkable performance on single image super-resolution (SISR), existing convolutional neural networks (CNN) mainly focus on broader and deeper architecture design, ignoring the detailed information of the image itself and the potential relationship between the features. Recently, several attempts have been made to address the SISR with graph representation learning. However, existing GNN-based methods learning to deal with the SISR problem are limited to the information processing of the entire image or the relationship processing between different feature images of the same layer, ignoring the interdependence between the extracted features of different layers, which is not conducive to extracting deeper hierarchical features. In this paper, we propose an interlayer feature representation based graph neural network for image super-resolution (LSGNN), which consists of a layer feature graph representation learning module and a channel spatial attention module. The layer feature graph representation learning module mainly captures the interdependence between the features of different layers, which can learn more fine-grained image detail features. In addition, we also unified a channel attention module and a spatial attention module into our model, which takes into account the channel dimension information and spatial scale information, to improve the expressive ability, and achieve high quality image details. Extensive experiments and ablation studies demonstrate the superiority of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盐烤香鱼完成签到,获得积分10
1秒前
MollyD发布了新的文献求助10
2秒前
标致梦玉发布了新的文献求助10
2秒前
十三完成签到,获得积分10
3秒前
lizhaoyu发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
动人的诗霜完成签到 ,获得积分10
8秒前
wu完成签到 ,获得积分10
9秒前
迷路的问玉完成签到,获得积分20
9秒前
9秒前
芋泥啵啵发布了新的文献求助10
10秒前
10秒前
lyg616358001发布了新的文献求助10
11秒前
静加油发布了新的文献求助10
11秒前
深情安青应助MollyD采纳,获得10
12秒前
善学以致用应助xx采纳,获得10
12秒前
知了发布了新的文献求助10
13秒前
zhangyu应助美味的薯片采纳,获得50
13秒前
13秒前
13秒前
一个发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
16秒前
猪丢了完成签到 ,获得积分10
16秒前
深情安青应助静加油采纳,获得10
19秒前
谦让羽毛发布了新的文献求助10
19秒前
pluto发布了新的文献求助10
20秒前
20秒前
林平之完成签到,获得积分10
20秒前
21秒前
零点起步完成签到,获得积分10
22秒前
小黑爱搞科研完成签到,获得积分20
22秒前
zhaopeipei关注了科研通微信公众号
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020