Graph Neural Networks with Interlayer Feature Representation for Image Super-Resolution

计算机科学 特征学习 卷积神经网络 特征(语言学) 人工智能 模式识别(心理学) 代表(政治) 图形 图像(数学) 人工神经网络 光学(聚焦) 特征提取 深度学习 理论计算机科学 光学 物理 法学 政治学 政治 语言学 哲学
作者
Shenggui Tang,Kaixuan Yao,Jianqing Liang,Zhiqiang Wang,Jiye Liang
标识
DOI:10.1145/3539597.3570436
摘要

Although deep learning has been extensively studied and achieved remarkable performance on single image super-resolution (SISR), existing convolutional neural networks (CNN) mainly focus on broader and deeper architecture design, ignoring the detailed information of the image itself and the potential relationship between the features. Recently, several attempts have been made to address the SISR with graph representation learning. However, existing GNN-based methods learning to deal with the SISR problem are limited to the information processing of the entire image or the relationship processing between different feature images of the same layer, ignoring the interdependence between the extracted features of different layers, which is not conducive to extracting deeper hierarchical features. In this paper, we propose an interlayer feature representation based graph neural network for image super-resolution (LSGNN), which consists of a layer feature graph representation learning module and a channel spatial attention module. The layer feature graph representation learning module mainly captures the interdependence between the features of different layers, which can learn more fine-grained image detail features. In addition, we also unified a channel attention module and a spatial attention module into our model, which takes into account the channel dimension information and spatial scale information, to improve the expressive ability, and achieve high quality image details. Extensive experiments and ablation studies demonstrate the superiority of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陶军辉发布了新的文献求助10
2秒前
何文鑫给何文鑫的求助进行了留言
2秒前
2秒前
3秒前
jy完成签到,获得积分20
3秒前
dlcbdy完成签到,获得积分10
4秒前
科研通AI6应助彘shen采纳,获得30
4秒前
缪连虎完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
hhh0921完成签到,获得积分20
4秒前
慕青应助yao chen采纳,获得10
5秒前
YuhangLiu完成签到,获得积分20
6秒前
非泥完成签到,获得积分10
6秒前
田同学发布了新的文献求助10
6秒前
6秒前
lene应助不回首采纳,获得10
6秒前
黄晓梅发布了新的文献求助10
6秒前
脑洞疼应助舒适芷天采纳,获得10
7秒前
顾建瑜发布了新的文献求助10
7秒前
曾经小伙发布了新的文献求助20
7秒前
一分不花赵德汉完成签到,获得积分10
8秒前
9秒前
9秒前
乐乐应助紫薰采纳,获得10
9秒前
善学以致用应助phraly采纳,获得30
10秒前
逐影发布了新的文献求助10
11秒前
11秒前
李爱国应助wnw采纳,获得30
11秒前
zzzq发布了新的文献求助10
12秒前
ChangShengtzu关注了科研通微信公众号
12秒前
14秒前
万能图书馆应助李不太白采纳,获得10
15秒前
16秒前
zzzq完成签到,获得积分20
17秒前
逐影完成签到,获得积分20
18秒前
18秒前
18秒前
杨静月发布了新的文献求助10
19秒前
沈文远完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294