Graph Neural Networks with Interlayer Feature Representation for Image Super-Resolution

计算机科学 特征学习 卷积神经网络 特征(语言学) 人工智能 模式识别(心理学) 代表(政治) 图形 图像(数学) 人工神经网络 光学(聚焦) 特征提取 深度学习 理论计算机科学 政治学 法学 哲学 物理 光学 政治 语言学
作者
Shenggui Tang,Kaixuan Yao,Jianqing Liang,Zhiqiang Wang,Jiye Liang
标识
DOI:10.1145/3539597.3570436
摘要

Although deep learning has been extensively studied and achieved remarkable performance on single image super-resolution (SISR), existing convolutional neural networks (CNN) mainly focus on broader and deeper architecture design, ignoring the detailed information of the image itself and the potential relationship between the features. Recently, several attempts have been made to address the SISR with graph representation learning. However, existing GNN-based methods learning to deal with the SISR problem are limited to the information processing of the entire image or the relationship processing between different feature images of the same layer, ignoring the interdependence between the extracted features of different layers, which is not conducive to extracting deeper hierarchical features. In this paper, we propose an interlayer feature representation based graph neural network for image super-resolution (LSGNN), which consists of a layer feature graph representation learning module and a channel spatial attention module. The layer feature graph representation learning module mainly captures the interdependence between the features of different layers, which can learn more fine-grained image detail features. In addition, we also unified a channel attention module and a spatial attention module into our model, which takes into account the channel dimension information and spatial scale information, to improve the expressive ability, and achieve high quality image details. Extensive experiments and ablation studies demonstrate the superiority of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
茶柠应助夏夏子采纳,获得10
1秒前
秦川发布了新的文献求助10
2秒前
舒心完成签到,获得积分20
2秒前
FashionBoy应助Dr采纳,获得10
2秒前
gcvyxcc完成签到,获得积分20
2秒前
李佳萌发布了新的文献求助10
2秒前
2秒前
星辰大海应助lijun采纳,获得10
3秒前
3秒前
不呐呐发布了新的文献求助10
3秒前
sennialiu完成签到,获得积分10
3秒前
3秒前
打打应助獭祭鱼采纳,获得10
3秒前
4秒前
federish完成签到 ,获得积分10
4秒前
阿源完成签到,获得积分10
4秒前
origin完成签到,获得积分10
4秒前
lu完成签到 ,获得积分10
4秒前
称心问枫完成签到,获得积分10
5秒前
小L发布了新的文献求助10
5秒前
这就是你发布了新的文献求助10
5秒前
Jasper应助小伙子采纳,获得10
6秒前
nkmenghan发布了新的文献求助10
6秒前
dbsjdjb发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
7秒前
wxyshare应助波奇朵朵采纳,获得10
7秒前
科研通AI5应助派大星采纳,获得10
8秒前
阿然发布了新的文献求助10
8秒前
Owen应助奶盖采纳,获得10
8秒前
乐观芸遥完成签到,获得积分10
9秒前
谨慎青亦完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助Melody采纳,获得10
10秒前
汉堡包应助素笺生花采纳,获得10
10秒前
马冬梅发布了新的文献求助10
10秒前
肖sir666发布了新的文献求助10
11秒前
11秒前
镁铝硅磷发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071427
求助须知:如何正确求助?哪些是违规求助? 4292111
关于积分的说明 13373408
捐赠科研通 4112841
什么是DOI,文献DOI怎么找? 2252088
邀请新用户注册赠送积分活动 1257155
关于科研通互助平台的介绍 1189893