Graph Neural Networks with Interlayer Feature Representation for Image Super-Resolution

计算机科学 特征学习 卷积神经网络 特征(语言学) 人工智能 模式识别(心理学) 代表(政治) 图形 图像(数学) 人工神经网络 光学(聚焦) 特征提取 深度学习 理论计算机科学 光学 物理 法学 政治学 政治 语言学 哲学
作者
Shenggui Tang,Kaixuan Yao,Jianqing Liang,Zhiqiang Wang,Jiye Liang
标识
DOI:10.1145/3539597.3570436
摘要

Although deep learning has been extensively studied and achieved remarkable performance on single image super-resolution (SISR), existing convolutional neural networks (CNN) mainly focus on broader and deeper architecture design, ignoring the detailed information of the image itself and the potential relationship between the features. Recently, several attempts have been made to address the SISR with graph representation learning. However, existing GNN-based methods learning to deal with the SISR problem are limited to the information processing of the entire image or the relationship processing between different feature images of the same layer, ignoring the interdependence between the extracted features of different layers, which is not conducive to extracting deeper hierarchical features. In this paper, we propose an interlayer feature representation based graph neural network for image super-resolution (LSGNN), which consists of a layer feature graph representation learning module and a channel spatial attention module. The layer feature graph representation learning module mainly captures the interdependence between the features of different layers, which can learn more fine-grained image detail features. In addition, we also unified a channel attention module and a spatial attention module into our model, which takes into account the channel dimension information and spatial scale information, to improve the expressive ability, and achieve high quality image details. Extensive experiments and ablation studies demonstrate the superiority of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有机分子笼完成签到,获得积分10
1秒前
小北完成签到,获得积分10
3秒前
3秒前
Tan完成签到,获得积分10
5秒前
小手冰凉完成签到,获得积分10
5秒前
夏小胖发布了新的文献求助10
9秒前
蔡继海发布了新的文献求助10
9秒前
10秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
11秒前
11秒前
瘦瘦新烟完成签到,获得积分10
12秒前
13秒前
14秒前
小北发布了新的文献求助10
14秒前
蔡继海完成签到,获得积分10
16秒前
vicki发布了新的文献求助10
18秒前
19秒前
wyhx完成签到 ,获得积分10
19秒前
善学以致用应助小九九采纳,获得10
20秒前
20秒前
天天快乐应助学术老6采纳,获得10
21秒前
22秒前
KAOKAO完成签到,获得积分10
23秒前
123456发布了新的文献求助10
24秒前
在荔栀阿完成签到 ,获得积分10
24秒前
vicki完成签到,获得积分20
25秒前
甜美帅哥完成签到 ,获得积分10
27秒前
Lucas应助研友_LNBeyL采纳,获得10
29秒前
二分三分完成签到,获得积分10
30秒前
淡淡的白羊完成签到 ,获得积分10
30秒前
耶耶小豆包完成签到 ,获得积分10
33秒前
33秒前
小二郎应助BINGBING1230采纳,获得10
34秒前
leezh发布了新的文献求助10
35秒前
白鸽鸽完成签到,获得积分10
35秒前
36秒前
chenzihao完成签到,获得积分10
40秒前
小九九发布了新的文献求助10
41秒前
Orange应助小鹏采纳,获得10
41秒前
端庄青雪完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316