亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A combined non‐enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub‐centimeter pulmonary solid nodules

无线电技术 医学 接收机工作特性 放射科 结核(地质) 置信区间 恶性肿瘤 数据集 核医学 人工智能 计算机科学 病理 内科学 古生物学 生物
作者
Rui‐Yu Lin,Yineng Zheng,Fajin Lv,B. Fu,Wang-jia Li,Zhang‐Rui Liang,Zhi‐gang Chu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2835-2843 被引量:8
标识
DOI:10.1002/mp.16316
摘要

Abstract Background Radiomics has been used to predict pulmonary nodule (PN) malignancy. However, most of the studies focused on pulmonary ground‐glass nodules. The use of computed tomography (CT) radiomics in pulmonary solid nodules, particularly sub‐centimeter solid nodules, is rare. Purpose This study aims to develop a radiomics model based on non‐enhanced CT images that can distinguish between benign and malignant sub‐centimeter pulmonary solid nodules (SPSNs, <1 cm). Methods The clinical and CT data of 180 SPSNs confirmed by pathology were analyzed retrospectively. All SPSNs were divided into two groups: training set ( n = 144) and testing set ( n = 36). From non‐enhanced chest CT images, over 1000 radiomics features were extracted. Radiomics feature selection was performed using the analysis of variance and principal component analysis. The selected radiomics features were fed into a support vector machine (SVM) to develop a radiomics model. The clinical and CT characteristics were used to develop a clinical model. Associating non‐enhanced CT radiomics features with clinical factors were used to develop a combined model using SVM. The performance was evaluated using the area under the receiver‐operating characteristic curve (AUC). Results The radiomics model performed well in distinguishing between benign and malignant SPSNs, with an AUC of 0.913 (95% confidence interval [CI], 0.862–0.954) in the training set and an AUC of 0.877 (95% CI, 0.817–0.924) in the testing set. The combined model outperformed the clinical and radiomics models with an AUC of 0.940 (95% CI, 0.906–0.969) in the training set and an AUC of 0.903 (95% CI, 0.857–0.944) in the testing set. Conclusions Radiomics features based on non‐enhanced CT images can be used to differentiate SPSNs. The combined model, which included radiomics and clinical factors, had the best discrimination power between benign and malignant SPSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
寒冷念文发布了新的文献求助10
3秒前
美满的小蘑菇完成签到 ,获得积分10
4秒前
a慈发布了新的文献求助10
6秒前
你好关注了科研通微信公众号
6秒前
星星完成签到,获得积分10
9秒前
科研通AI5应助Karol采纳,获得10
12秒前
15秒前
求求发布了新的文献求助10
20秒前
kuyi完成签到 ,获得积分10
21秒前
21秒前
lulu发布了新的文献求助100
27秒前
lin.xy完成签到,获得积分10
27秒前
科研菜鸟完成签到,获得积分10
36秒前
慕青应助科研通管家采纳,获得10
38秒前
NexusExplorer应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
科研通AI5应助lulu采纳,获得10
41秒前
大个应助zy采纳,获得10
42秒前
求求发布了新的文献求助10
48秒前
zy完成签到,获得积分20
53秒前
53秒前
zy发布了新的文献求助10
57秒前
1分钟前
JSEILWQ完成签到 ,获得积分10
1分钟前
lulu完成签到,获得积分10
1分钟前
CRYLK完成签到 ,获得积分10
1分钟前
小鱼完成签到,获得积分10
1分钟前
斯文败类应助Apocalypse_zjz采纳,获得10
1分钟前
小鱼发布了新的文献求助10
1分钟前
小透明完成签到,获得积分0
1分钟前
Mu完成签到,获得积分10
1分钟前
Apocalypse_zjz完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助Apocalypse_zjz采纳,获得10
1分钟前
今后应助Corn_Dog采纳,获得10
1分钟前
2分钟前
落寞的书易完成签到 ,获得积分10
2分钟前
七大洋的风完成签到,获得积分10
2分钟前
苗条世德发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695014
求助须知:如何正确求助?哪些是违规求助? 3246603
关于积分的说明 9850281
捐赠科研通 2958177
什么是DOI,文献DOI怎么找? 1622009
邀请新用户注册赠送积分活动 767617
科研通“疑难数据库(出版商)”最低求助积分说明 741221