已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Co-Optimization of Design and Control of Energy Efficient Hybrid Electric Vehicles Using Coordination Schemes

数学优化 最优化问题 电池(电) 动力传动系统 计算机科学 模型预测控制 整数(计算机科学) 分解 控制理论(社会学) 功率(物理) 控制(管理) 数学 物理 热力学 扭矩 人工智能 生物 量子力学 程序设计语言 生态学
作者
Muhammad Qaisar Fahim,Manfredi Villani,Hamza Anwar,Qadeer Ahmed,Kesavan Ramakrishnan
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASME International]
卷期号:: 1-19
标识
DOI:10.1115/1.4056782
摘要

Abstract Design and control co-optimization studies for hybrid vehicles have been proposed in the past. However, such works suffer from difficulties arising due to (a) diverse real- and integer-valued variables, (b) complex nonlinear powertrain dynamics and design interconnections, (c) conflicting objective functions with path constraints, and (d) high computational resources requirements. To meet these challenges, this study presents an efficient co-optimization framework for hybrid electric vehicles which is built using existing algorithms and coordination schemes. Particular emphasis is given to the simultaneous scheme and the decomposition-based scheme. The decomposition-based scheme with the problem decomposition proposed in this work can efficiently handle multi-time scale state variables and both integer- and real valued design and control optimization variables. This is demonstrated by solving the mixed-integer optimal design and control problem of a series hybrid vehicle over a one-hour long drive cycle with time discretization of one second. The problem complexity is elevated by using an increasing number of state variables (including battery state of charge, battery energy, and after-treatment system temperature), control variables (such as the engine power and engine on/off), and design parameters (such as the number of battery cells and the type and size of the engine). In addition, a multi-objective cost function is used to find a tradeoff solution between fuel consumption and emissions minimization. The results show that in terms of optimality of the solution, the decomposition based scheme is comparable with the simultaneous, but can give a 14% improvement in computational performance. The effectiveness of the proposed framework is demonstrated by comparing the co-optimization results against a baseline case in which only the optimal control problem is solved. The co-optimized solution yields up to 3.7% average genset efficiency improvement and a fuel consumption reduction to 1.6 kg from 2.5 kg, which is further reduced to 1.5 kg by adding the engine on-off control. Finally, a decision matrix is developed to provide guidance on the selection of the optimization algorithm and coordination scheme for any problem at hand.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
W7222发布了新的文献求助30
1秒前
酷波er应助zhouzi180采纳,获得20
1秒前
2秒前
2秒前
CipherSage应助_panacea采纳,获得10
3秒前
烟花应助lujing采纳,获得10
3秒前
啥也不会发布了新的文献求助10
4秒前
林荣容发布了新的文献求助10
6秒前
7秒前
大伟还是文章读少了完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
dd完成签到,获得积分10
9秒前
CipherSage应助KKzed采纳,获得10
10秒前
英姑应助Ann采纳,获得10
11秒前
无私的续完成签到,获得积分10
12秒前
Owen应助Unicorn采纳,获得10
12秒前
Vexolve完成签到 ,获得积分10
13秒前
bean发布了新的文献求助20
13秒前
14秒前
摸鱼人完成签到,获得积分10
14秒前
煎饼果子不加葱完成签到,获得积分10
14秒前
dd发布了新的文献求助10
15秒前
大模型应助自由柠檬采纳,获得10
16秒前
科研女郎完成签到 ,获得积分10
17秒前
SSUABWB发布了新的文献求助10
17秒前
茫然树茫然果完成签到,获得积分10
18秒前
情怀应助阔达的秀发采纳,获得10
18秒前
19秒前
幽默的季节完成签到 ,获得积分10
19秒前
搞学丐完成签到,获得积分10
19秒前
20秒前
FashionBoy应助Galaxy8采纳,获得10
20秒前
biu完成签到 ,获得积分10
21秒前
Unicorn完成签到,获得积分10
22秒前
22秒前
无私的续发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644177
求助须知:如何正确求助?哪些是违规求助? 4763055
关于积分的说明 15023932
捐赠科研通 4802413
什么是DOI,文献DOI怎么找? 2567430
邀请新用户注册赠送积分活动 1525174
关于科研通互助平台的介绍 1484663