益生元
蔷薇花
丙酸盐
发酵
菊粉
丁酸盐
短链脂肪酸
食品科学
生物
生物化学
双歧杆菌
脂肪酸
肠道菌群
化学
乳酸菌
作者
Peter Philip James Jackson,Anisha Wijeyesekera,Jessica Van Harsselaar,Stephan Theis,Robert A. Rastall
标识
DOI:10.1093/jambio/lxac069
摘要
Abstract Aims In this study, we explored the effects that the prebiotic inulin-type fructans, and prebiotic candidates: 2’fucosyllactose and β-glucan from barley, singular and in combination had on microbial load, microbiome profile, and short-chain fatty acid production. This was carried out as a prescreening tool to determine combinations that could be taken forward for use in a human intervention trial. Methods and results Effects of inulin-type fructans, 2’fucosyllactose and β-glucan from barley in singular and combination on microbial load and profile and short-chain fatty acid production (SCFA) was conducted using in vitro batch culture fermentation over 48 h. Changes in microbial load and profile were assessed by fluorescence in situ hybridization flow cytometry (FISH-FLOW) and 16S rRNA sequencing, and changes in SCFA via gas chromatography. All substrates generated changes in microbial load and profile, achieving peak microbial load at 8 h fermentation with the largest changes in profile across all substrates in Bifidobacterium (Q < 0.05). This coincided with significant increases in acetate observed throughout fermentation (Q < 0.05). In comparison to sole supplementation combinations of oligofructose, β-glucan and 2’fuscosyllactose induced significant increases in both propionate and butyrate producing bacteria (Roseburia and Faecalibacterium praunitzii), and concentrations of propionate and butyrate, the latter being maintained until the end of fermentation (all Q < 0.05). Conclusions Combinations of oligofructose, with β-glucan and 2’fucosyllactose induced selective changes in microbial combination and SCFA namely Roseburia, F. praunitzii, propionate and butyrate compared to sole supplementation.
科研通智能强力驱动
Strongly Powered by AbleSci AI