Gathering events, e.g., going to gyms and meetings, are ubiquitous and crucial in the spreading phenomena, which induce higher-order interactions, and thus can be described as higher-order networks. Recently, uncovering and understanding the interacting mechanisms, spatiotemporal evolving patterns, critical phenomena and phase transitions of higher-order networked epidemic spreading is a very hot challenge in network science. This review introduces recent progress in studying epidemic-spreading dynamics on higher-order networks, emphasizing the contributions from statistical mechanics and network science perspectives. The theoretical methods, critical phenomena, phase transitions, spreading mechanisms, and effects of higher-order network topology for single and interacting epidemic spreading dynamics are presented in detail, and the challenges in this field and open issues for future studies are also discussed.