清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: a two-center study

列线图 医学 接收机工作特性 逻辑回归 单变量 超声波 放射科 单变量分析 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Fuxiang Fang,Yan Sun,Hualin Huang,Yueting Huang,Xing Luo,Wei Yao,Liyan Wei,Guiwu Xie,Yongxian Wu,Zheng Lu,Jiawen Zhao,Chengyang Li
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:150 (1) 被引量:1
标识
DOI:10.1007/s00432-023-05549-6
摘要

Abstract Objective To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of testicular masses, aiming to guide individualized treatment and minimize unnecessary procedures. Methods We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model’s efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments (5–8 years of practice). Results The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malignant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists. Conclusion The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It augments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Moona采纳,获得10
3秒前
彭于晏应助银鱼在游采纳,获得10
10秒前
hellokitty完成签到,获得积分10
11秒前
一颗酒窝完成签到 ,获得积分10
26秒前
zhangjw完成签到 ,获得积分0
29秒前
32秒前
韧迹完成签到 ,获得积分0
46秒前
量子星尘发布了新的文献求助10
51秒前
kean1943完成签到,获得积分10
1分钟前
王波完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
盈盈发布了新的文献求助10
1分钟前
林克完成签到,获得积分10
1分钟前
呆萌冰彤完成签到 ,获得积分10
1分钟前
1分钟前
银鱼在游发布了新的文献求助10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
鲤鱼山人完成签到 ,获得积分10
1分钟前
sevenhill完成签到 ,获得积分0
1分钟前
Orange应助www采纳,获得10
1分钟前
Arctic完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
wave8013完成签到 ,获得积分10
2分钟前
2分钟前
两个轮完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
英俊的铭应助ysss0831采纳,获得10
2分钟前
红火完成签到 ,获得积分10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
herpes完成签到 ,获得积分10
4分钟前
chichenglin完成签到 ,获得积分0
4分钟前
gmc完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349