Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: a two-center study

列线图 医学 接收机工作特性 逻辑回归 单变量 超声波 放射科 单变量分析 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Fuxiang Fang,Yan Sun,Hualin Huang,Yueting Huang,Xing Luo,Wei Yao,Liyan Wei,Guiwu Xie,Yongxian Wu,Zheng Lu,Jiawen Zhao,Chengyang Li
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:150 (1) 被引量:1
标识
DOI:10.1007/s00432-023-05549-6
摘要

Abstract Objective To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of testicular masses, aiming to guide individualized treatment and minimize unnecessary procedures. Methods We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model’s efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments (5–8 years of practice). Results The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malignant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists. Conclusion The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It augments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
H71000A完成签到 ,获得积分10
1秒前
fxd发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
兮颜完成签到,获得积分10
2秒前
哒丝萌德发布了新的文献求助10
2秒前
科研通AI6应助bloom采纳,获得10
2秒前
乐观紫霜发布了新的文献求助10
2秒前
zz发布了新的文献求助10
3秒前
sx发布了新的文献求助10
3秒前
HAI完成签到,获得积分10
3秒前
椰子水发布了新的文献求助10
3秒前
3秒前
3秒前
赤侯发布了新的文献求助10
3秒前
Jared应助Vicky采纳,获得10
3秒前
pp-doctor完成签到,获得积分10
4秒前
皮皮完成签到,获得积分10
4秒前
zhu发布了新的文献求助10
4秒前
我是老大应助戚薇采纳,获得10
4秒前
顺利毕业完成签到,获得积分10
4秒前
5秒前
alkali发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
方黎昕完成签到,获得积分10
5秒前
5秒前
5秒前
愉快的芒果完成签到,获得积分10
5秒前
英俊的铭应助rachel采纳,获得10
5秒前
6秒前
李健的小迷弟应助孙傲采纳,获得10
6秒前
7秒前
7秒前
香蕉觅云应助zz采纳,获得10
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401