Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: a two-center study

列线图 医学 接收机工作特性 逻辑回归 单变量 超声波 放射科 单变量分析 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Fuxiang Fang,Yan Sun,Hualin Huang,Yueting Huang,Xing Luo,Wei Yao,Liyan Wei,Guiwu Xie,Yongxian Wu,Zheng Lu,Jiawen Zhao,Chengyang Li
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (1) 被引量:1
标识
DOI:10.1007/s00432-023-05549-6
摘要

Abstract Objective To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of testicular masses, aiming to guide individualized treatment and minimize unnecessary procedures. Methods We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model’s efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments (5–8 years of practice). Results The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malignant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists. Conclusion The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It augments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
courage完成签到,获得积分10
1秒前
shenlee发布了新的文献求助10
1秒前
SDM完成签到,获得积分10
1秒前
3秒前
ncycg发布了新的文献求助200
5秒前
SDM发布了新的文献求助10
6秒前
slp完成签到,获得积分10
6秒前
7秒前
Jasmine完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
研友_VZG7GZ应助科研小白鼠采纳,获得30
8秒前
John完成签到 ,获得积分10
9秒前
10秒前
12秒前
嘉嘉完成签到 ,获得积分10
12秒前
lin完成签到,获得积分10
13秒前
丘比特应助leo采纳,获得10
13秒前
srics发布了新的文献求助10
13秒前
HoPui6发布了新的文献求助10
13秒前
在水一方应助夜月残阳采纳,获得10
14秒前
15秒前
小蘑菇应助shenlee采纳,获得10
15秒前
15秒前
充电宝应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
今后应助科研通管家采纳,获得30
17秒前
华仔应助科研通管家采纳,获得10
17秒前
Qiao应助科研通管家采纳,获得150
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
开心罡发布了新的文献求助10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193