已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: a two-center study

列线图 医学 接收机工作特性 逻辑回归 单变量 超声波 放射科 单变量分析 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Fuxiang Fang,Yan Sun,Hualin Huang,Yueting Huang,Xing Luo,Wei Yao,Liyan Wei,Guiwu Xie,Yongxian Wu,Zheng Lu,Jiawen Zhao,Chengyang Li
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (1) 被引量:1
标识
DOI:10.1007/s00432-023-05549-6
摘要

Abstract Objective To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of testicular masses, aiming to guide individualized treatment and minimize unnecessary procedures. Methods We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model’s efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments (5–8 years of practice). Results The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malignant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists. Conclusion The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It augments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定背包发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
番茄酱发布了新的文献求助10
2秒前
aiine完成签到,获得积分10
3秒前
yyc完成签到,获得积分10
3秒前
英姑应助王东采纳,获得10
4秒前
Shanglinqin完成签到,获得积分10
4秒前
科研通AI6应助yinch采纳,获得20
6秒前
小萌兽发布了新的文献求助10
6秒前
6秒前
Ronnie完成签到 ,获得积分10
9秒前
丫丫完成签到 ,获得积分10
9秒前
ZJX应助小邓采纳,获得10
11秒前
老头大学习完成签到 ,获得积分10
11秒前
12秒前
祖尔风发布了新的文献求助10
12秒前
12秒前
失眠傲芙完成签到,获得积分10
14秒前
Jally完成签到 ,获得积分10
14秒前
15秒前
16秒前
默幻弦完成签到,获得积分10
17秒前
CCsouljump完成签到 ,获得积分10
19秒前
典雅的黑猫完成签到,获得积分10
19秒前
王东发布了新的文献求助10
19秒前
cmxing完成签到 ,获得积分10
19秒前
祖尔风完成签到,获得积分10
21秒前
所所应助嘟嘟噜采纳,获得10
21秒前
浮浮世世发布了新的文献求助10
22秒前
犹豫的雁卉完成签到,获得积分10
23秒前
24秒前
orixero应助智慧吗喽采纳,获得10
24秒前
共享精神应助harmon采纳,获得10
25秒前
28秒前
科研通AI6应助张志超采纳,获得10
28秒前
张贵虎发布了新的文献求助10
28秒前
米酒汤圆发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339