电解质
材料科学
成核
枝晶(数学)
化学工程
分子
阳极
密度泛函理论
化学物理
无机化学
电极
物理化学
计算化学
化学
有机化学
工程类
数学
几何学
作者
Xin Wang,Hui Peng,Kanjun Sun,Fan Yang,Zhiyuan Liu,Shuzhen Cui,Xuan Xie,Guofu Ma
标识
DOI:10.1016/j.ensm.2024.103208
摘要
Aqueous zinc (Zn)-based energy storage devices have attracted great attention due to their inherent low cost, intrinsic safety, and environmental friendliness. However, the growth of Zn dendrite and side reactions from water decomposition have limited the lifespan of Zn-ion energy storage. Herein, a green and multifunctional melamine (M) molecules is proposed as electrolyte additive and incorporated into the ZnSO4 electrolyte to modulate the deposition/stripping environment of Zn2+ and stabilize the Zn anode. The results of experiments coupled with density-functional theory (DFT) calculations and molecular dynamics (MD) simulations show that M molecules are able to optimize the electrolyte environment and regulate the electrode-electrolyte surface. More specifically, the hydrophilic group (-NH2) in the M molecule can effectively break the electrolyte sheath structure and reconstruct the hydrogen bonding network, because the M molecule has a stronger binding energy compared to H2O. Meanwhile, the -N= groups in M can anchor Zn2+ and cooperate with them to form a dynamic electrostatic protective layer, change the electric field distribution around the Zn deposition layer, provide more nucleation sites for Zn2+ and promote the deposition of Zn along the (002) crystal plane, thus inhibiting the random growth of Zn dendrite and the occurrence of side reactions. Consequently, the Zn//Zn symmetric cell assembled with the ZnSO4+M electrolyte presents boost the stable lifespan over 1,100 hours at a current density of 2 mA cm−2, 1 mAh cm−2, and also up to 1900 stable cycles with almost 100 % Coulomb efficiency for Zn//Cu asymmetric cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI