已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Monaural Speech Dereverberation Using Deformable Convolutional Networks

计算机科学 语音识别 语音增强 可理解性(哲学) 光谱图 单声道 混响 语音处理 声道 人工智能 声学 降噪 认识论 物理 哲学
作者
Vinay Kothapally,John H. L. Hansen
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1712-1723 被引量:2
标识
DOI:10.1109/taslp.2024.3358720
摘要

Reverberation and background noise can degrade speech quality and intelligibility when captured by a distant microphone. In recent years, researchers have developed several deep learning (DL)-based single-channel speech dereverberation systems that aim to minimize distortions introduced into speech captured in naturalistic environments. A majority of these DL-based systems enhance an unseen distorted speech signal by applying a predetermined set of weights to regions of the speech spectrogram, regardless of the degree of distortion within the respective regions. Such a system might not be an ideal solution for dereverberation task. To address this, we present a DL-based end-to-end single-channel speech dereverberation system that uses deformable convolution networks (DCN) that dynamically adjusts its receptive field based on the degree of distortions within an unseen speech signal. The proposed system includes the following components to simultaneously enhance the magnitude and phase responses of speech, which leads to improved perceptual quality: (i) a complex spectrum enhancement module that uses multi-frame filtering technique to implicitly correct the phase response, (ii) a magnitude enhancement module that suppresses dominant reflections and recovers the formant structure using deep filtering (DF) technique, and (iii) a speech activity detection (SAD) estimation module that predicts frame-wise speech activity to suppress residuals in non-speech regions. We assess the performance of the proposed system by employing objective speech quality metrics on both simulated and real speech recordings from the REVERB challenge corpus. The experimental results demonstrate the benefits of using DCNs and multi-frame filtering for speech dereverberation task. We compare the performance of our proposed system against other signal processing (SP) and DL-based systems and observe that it consistently outperforms other approaches across all speech quality metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊蕾娜完成签到 ,获得积分10
刚刚
丁丁完成签到 ,获得积分10
刚刚
eLiauK完成签到 ,获得积分10
2秒前
專注完美近乎苛求完成签到,获得积分10
3秒前
bopbopbaby完成签到 ,获得积分10
4秒前
5秒前
NIUB完成签到,获得积分10
6秒前
6秒前
万能图书馆应助大冰采纳,获得10
7秒前
啥时候吃火锅完成签到 ,获得积分0
9秒前
刘建章完成签到 ,获得积分10
10秒前
liuheqian发布了新的文献求助10
11秒前
oleskarabach发布了新的文献求助10
12秒前
一口吃三个月亮完成签到,获得积分10
13秒前
清净126完成签到 ,获得积分10
14秒前
甜蜜的灵凡完成签到,获得积分10
15秒前
端庄的访卉完成签到 ,获得积分10
15秒前
开放素完成签到 ,获得积分10
17秒前
ezekiet完成签到 ,获得积分10
18秒前
开拖拉机的芍药完成签到 ,获得积分10
18秒前
潘善若完成签到,获得积分10
18秒前
天天快乐应助甜蜜的灵凡采纳,获得10
20秒前
小肖的KYT完成签到,获得积分10
21秒前
wyq完成签到,获得积分10
21秒前
HRZ完成签到 ,获得积分10
22秒前
22秒前
满眼星辰完成签到 ,获得积分10
23秒前
25秒前
sora98完成签到 ,获得积分10
28秒前
wcy完成签到 ,获得积分10
28秒前
boging发布了新的文献求助10
30秒前
huhu完成签到 ,获得积分10
32秒前
鞑靼完成签到 ,获得积分10
32秒前
Ngu完成签到 ,获得积分10
34秒前
水若琳完成签到,获得积分10
35秒前
Lucas应助liuheqian采纳,获得10
36秒前
40秒前
rick3455完成签到 ,获得积分10
41秒前
SS完成签到,获得积分0
41秒前
慕青应助broycn采纳,获得10
42秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376766
求助须知:如何正确求助?哪些是违规求助? 2992685
关于积分的说明 8752425
捐赠科研通 2677096
什么是DOI,文献DOI怎么找? 1466461
科研通“疑难数据库(出版商)”最低求助积分说明 678311
邀请新用户注册赠送积分活动 669917