生物
MAPK/ERK通路
基因敲除
癌症研究
基因沉默
信号转导
细胞生长
小发夹RNA
激酶
细胞生物学
基因
遗传学
作者
Li Wang,Gan Xiong,Weixin Cai,Qian Tao
出处
期刊:Gene
[Elsevier]
日期:2024-02-01
卷期号:: 148234-148234
被引量:3
标识
DOI:10.1016/j.gene.2024.148234
摘要
Ameloblastoma (AM), a common odontogenic epithelial tumor, exhibits aggressive growth due to incomplete encapsulation within the jawbone. Postoperative recurrence is a significant concern, closely associated with its invasive nature. We investigate the role of tRNA N-7 methylguanosine (m7G) modification mediated by Methyltransferase-like 1 (METTL1) in AM's invasive growth and prognosis. METTL1 expression was analyzed in diverse cell lines and clinical AM tissues. Its association with postoperative AM recurrence was examined. Functional experiments included METTL1 gene silencing using shRNA in hTERT-AM cells, assessing cell proliferation, migration, and invasion. Xenograft tumor model was constructed to investigate tumor growth. Molecular mechanisms behind METTL1's role in AM invasiveness were elucidated using Ribosome nascent-chain complex-bound mRNA sequencing (RNC-seq) and experimental analysis. High METTL1 expression was significantly associated with postoperative recurrence in AM. The inhibition of AM development following METTL1 knockdown has been corroborated by experiments conducted both in vitro and in vivo. Analysis of RNC-seq data revealed that downregulated genes were predominantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that METTL1 may promote AM's invasive growth through the MAPK signaling pathway. Our study elucidates the functional role of METTL1 in AM's invasive development and prognosis. High METTL1 expression is linked to postoperative recurrence, and METTL1 appears to promote AM invasiveness through the MAPK signaling pathway. These findings contribute to a better understanding of AM pathogenesis and may guide future therapeutic strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI