Secure and Efficient Federated Learning Through Layering and Sharding Blockchain

块链 计算机科学 分布式计算 异步通信 数据库事务 计算机网络 数据库 计算机安全
作者
Shuo Yuan,Bin Cao,Yao Sun,Zhiguo Wan,Mugen Peng
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 3120-3134 被引量:11
标识
DOI:10.1109/tnse.2024.3361458
摘要

Introducing blockchain into Federated Learning (FL) to build a trusted edge computing environment for transmission and learning has attracted widespread attention as a new decentralized learning pattern. However, traditional consensus mechanisms and architectures of blockchain systems face significant challenges in handling large-scale FL tasks, especially on Internet of Things (IoT) devices, due to their substantial resource consumption, limited transaction throughput, and complex communication requirements. To address these challenges, this paper proposes ChainFL, a novel two-layer blockchain-driven FL system. It splits the IoT network into multiple shards within the subchain layer, effectively reducing the scale of information exchange, and employs a Direct Acyclic Graph (DAG)-based mainchain as the mainchain layer, enabling parallel and asynchronous cross-shard validation. Furthermore, the FL procedure is customized to integrate deeply with blockchain technology, and a modified DAG consensus mechanism is designed to mitigate distortion caused by abnormal models. To provide a proof-of-concept implementation and evaluation, multiple subchains based on Hyperledger Fabric and a self-developed DAG-based mainchain are deployed. Extensive experiments demonstrate that ChainFL significantly surpasses conventional FL systems, showing up to a 14

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的蘑菇完成签到,获得积分10
刚刚
领导范儿应助大气的梨愁采纳,获得10
1秒前
求助人员发布了新的文献求助10
1秒前
完美世界应助小纸白采纳,获得10
1秒前
shenya0810应助long采纳,获得10
1秒前
无极微光应助谁在说话采纳,获得20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
堪妙松发布了新的文献求助20
3秒前
慕青应助Rubia采纳,获得10
3秒前
3秒前
4秒前
yannn1126发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
nnmm11发布了新的文献求助10
4秒前
100完成签到,获得积分10
5秒前
5秒前
All发布了新的文献求助10
6秒前
6秒前
紫麒麟发布了新的文献求助10
6秒前
安AN完成签到,获得积分10
6秒前
安静发布了新的文献求助10
7秒前
飞fei发布了新的文献求助50
8秒前
8秒前
陈忠正发布了新的文献求助20
8秒前
温十一应助111采纳,获得10
8秒前
9秒前
科研混子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
辣辣发布了新的文献求助10
11秒前
肆三一发布了新的文献求助10
12秒前
爆米花应助qww采纳,获得40
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362