Hybrid CNN-Transformer Network With Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans

分割 人工智能 计算机科学 卷积神经网络 变压器 编码器 模式识别(心理学) 图像分割 深度学习 特征提取 特征学习 特征(语言学) 计算机视觉 工程类 语言学 哲学 电压 电气工程 操作系统
作者
Hulin Kuang,Yahui Wang,Jin Liu,Jie Wang,Quanliang Cao,Bo Hu,Wu Qiu,Jianxin Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2303-2316 被引量:12
标识
DOI:10.1109/tmi.2024.3362879
摘要

Lesion segmentation is a fundamental step for the diagnosis of acute ischemic stroke (AIS). Non-contrast CT (NCCT) is still a mainstream imaging modality for AIS lesion measurement. However, AIS lesion segmentation on NCCT is challenging due to low contrast, noise and artifacts. To achieve accurate AIS lesion segmentation on NCCT, this study proposes a hybrid convolutional neural network (CNN) and Transformer network with circular feature interaction and bilateral difference learning. It consists of parallel CNN and Transformer encoders, a circular feature interaction module, and a shared CNN decoder with a bilateral difference learning module. A new Transformer block is particularly designed to solve the weak inductive bias problem of the traditional Transformer. To effectively combine features from CNN and Transformer encoders, we first design a multi-level feature aggregation module to combine multi-scale features in each encoder and then propose a novel feature interaction module containing circular CNN-to-Transformer and Transformer-to-CNN interaction blocks. Besides, a bilateral difference learning module is proposed at the bottom level of the decoder to learn the different information between the ischemic and contralateral sides of the brain. The proposed method is evaluated on three AIS datasets: the public AISD, a private dataset and an external dataset. Experimental results show that the proposed method achieves Dices of 61.39% and 46.74% on the AISD and the private dataset, respectively, outperforming 17 state-of-the-art segmentation methods. Besides, volumetric analysis on segmented lesions and external validation results imply that the proposed method is potential to provide support information for AIS diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忧子忘完成签到,获得积分10
刚刚
1秒前
foreverchoi完成签到,获得积分10
1秒前
HH完成签到,获得积分20
1秒前
2秒前
whm完成签到,获得积分10
2秒前
4秒前
邬傥完成签到,获得积分10
5秒前
tomato应助执着采纳,获得20
6秒前
大方嵩发布了新的文献求助10
6秒前
梓ccc完成签到,获得积分10
6秒前
6秒前
求助发布了新的文献求助10
7秒前
风雨1210发布了新的文献求助10
7秒前
7秒前
8秒前
小梁要加油完成签到,获得积分20
8秒前
Alpha发布了新的文献求助10
9秒前
刘鹏宇发布了新的文献求助10
10秒前
zhangscience完成签到,获得积分10
10秒前
可爱的函函应助若狂采纳,获得10
11秒前
小蘑菇应助阿美采纳,获得30
11秒前
科研通AI2S应助机智小虾米采纳,获得10
12秒前
充电宝应助Xx.采纳,获得10
13秒前
zhangscience发布了新的文献求助10
14秒前
深情安青应助大方嵩采纳,获得10
15秒前
英俊的铭应助大方嵩采纳,获得10
15秒前
李还好完成签到,获得积分10
16秒前
满意的柏柳完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
buno应助88采纳,获得10
19秒前
20秒前
三千世界完成签到,获得积分10
20秒前
20秒前
愉快的访旋完成签到,获得积分10
21秒前
Alpha完成签到,获得积分10
22秒前
大大发布了新的文献求助30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808