Image segmentation using Vision Transformer for tunnel defect assessment

人工智能 计算机视觉 分割 变压器 计算机科学 图像分割 工程类 电气工程 电压
作者
Shaojie Qin,Taiyue Qi,Tang Deng,Xiaodong Huang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (21): 3243-3268 被引量:11
标识
DOI:10.1111/mice.13181
摘要

Abstract Existing tunnel detection methods include crack and water‐leakage segmentation networks. However, if the automated detection algorithm cannot process all defect cases, manual detection is required to eliminate potential risks. The existing intelligent detection methods lack a universal method that can accurately segment all types of defects, particularly when multiple defects are superimposed. To address this issue, a defect segmentation model is proposed based on Vision Transformer (ViT), which is completely different from the network structure of a convolutional neural network. The model proposes an adapter and a decoding head to improve the training effect of the transformer encoder, allowing it to be fitted to small‐scale datasets. In post‐processing, a method is proposed to quantify the threat level for the defects, with the aim of outputting qualitative results that simulate human observation. The model showed impressive results on a real‐world dataset containing 11,781 defect images collected from a real subway tunnel. The visualizing results proved that this method is effective and has uniform criteria for single, multiple, and comprehensive defects. Moreover, the tests proved that the proposed model has a significant advantage in the case of multiple‐defect superposition, and it achieved 93.77%, 88.36%, and 92.93% for mean accuracy (Acc), mean intersection over union, and mean F1‐score, respectively. With similar training parameters, the Acc of the proposed method is improved by more than 10% over the DeepLabv3+, Mask R‐convolutional neural network, and UPerNet‐R50 models and by more than 5% over the Swin Transformer and ViT‐Adapter. This study implemented a general method that can process all defect cases and output the threat evaluation results, thereby making more intelligent tunnel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助jyyg采纳,获得30
刚刚
芦泸发布了新的文献求助10
刚刚
JamesPei应助不来也不去采纳,获得10
1秒前
聚砂成塔完成签到,获得积分10
1秒前
大鸟依人完成签到 ,获得积分10
2秒前
勇敢虫子不怕困难完成签到,获得积分10
2秒前
cc完成签到,获得积分10
2秒前
Chihiro完成签到 ,获得积分10
2秒前
aa完成签到,获得积分10
3秒前
小刘完成签到,获得积分10
3秒前
科研通AI6应助文建武采纳,获得10
3秒前
orixero应助吴圳采纳,获得10
3秒前
bernie1023完成签到,获得积分10
4秒前
Akim应助我的账号采纳,获得10
4秒前
Lucas应助李君然采纳,获得10
4秒前
优秀问丝发布了新的文献求助30
4秒前
科研通AI6应助winki采纳,获得10
5秒前
Gwen完成签到,获得积分10
6秒前
6秒前
充电宝应助PigaChu采纳,获得10
6秒前
烟花应助mia采纳,获得10
6秒前
李爱国应助桃花长平采纳,获得10
6秒前
狮子沟核聚变骡子完成签到 ,获得积分10
6秒前
梦玲完成签到,获得积分10
7秒前
aa发布了新的文献求助10
7秒前
7秒前
7秒前
ym完成签到,获得积分10
7秒前
明理的蜗牛完成签到,获得积分10
7秒前
sunfield2014完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
ki完成签到,获得积分10
8秒前
8秒前
8秒前
伶俐一曲完成签到,获得积分10
9秒前
9秒前
9秒前
心肝宝贝甜蜜饯完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426