Image segmentation using Vision Transformer for tunnel defect assessment

人工智能 计算机视觉 分割 变压器 计算机科学 图像分割 工程类 电气工程 电压
作者
Shaojie Qin,Taiyue Qi,Tang Deng,Xiaodong Huang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (21): 3243-3268 被引量:11
标识
DOI:10.1111/mice.13181
摘要

Abstract Existing tunnel detection methods include crack and water‐leakage segmentation networks. However, if the automated detection algorithm cannot process all defect cases, manual detection is required to eliminate potential risks. The existing intelligent detection methods lack a universal method that can accurately segment all types of defects, particularly when multiple defects are superimposed. To address this issue, a defect segmentation model is proposed based on Vision Transformer (ViT), which is completely different from the network structure of a convolutional neural network. The model proposes an adapter and a decoding head to improve the training effect of the transformer encoder, allowing it to be fitted to small‐scale datasets. In post‐processing, a method is proposed to quantify the threat level for the defects, with the aim of outputting qualitative results that simulate human observation. The model showed impressive results on a real‐world dataset containing 11,781 defect images collected from a real subway tunnel. The visualizing results proved that this method is effective and has uniform criteria for single, multiple, and comprehensive defects. Moreover, the tests proved that the proposed model has a significant advantage in the case of multiple‐defect superposition, and it achieved 93.77%, 88.36%, and 92.93% for mean accuracy (Acc), mean intersection over union, and mean F1‐score, respectively. With similar training parameters, the Acc of the proposed method is improved by more than 10% over the DeepLabv3+, Mask R‐convolutional neural network, and UPerNet‐R50 models and by more than 5% over the Swin Transformer and ViT‐Adapter. This study implemented a general method that can process all defect cases and output the threat evaluation results, thereby making more intelligent tunnel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wxxz完成签到,获得积分10
1秒前
威武红酒完成签到 ,获得积分10
1秒前
双碳小王子完成签到,获得积分10
2秒前
www完成签到 ,获得积分10
2秒前
韭菜盒子发布了新的文献求助10
3秒前
SCI完成签到 ,获得积分10
5秒前
keyan完成签到 ,获得积分10
6秒前
格子完成签到,获得积分10
6秒前
hzl完成签到,获得积分10
6秒前
梅花易数完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
chenmeimei2012完成签到 ,获得积分10
9秒前
那时年少完成签到,获得积分10
11秒前
12秒前
feng完成签到,获得积分10
14秒前
16秒前
17秒前
woyaojiayou完成签到,获得积分10
18秒前
儒雅以云完成签到,获得积分10
19秒前
GreenT完成签到,获得积分10
20秒前
X519664508完成签到,获得积分0
20秒前
tangchao完成签到,获得积分10
21秒前
accepted发布了新的文献求助30
21秒前
雪寒完成签到,获得积分10
22秒前
石幻枫完成签到 ,获得积分0
23秒前
25秒前
amber完成签到 ,获得积分10
25秒前
Green完成签到,获得积分10
27秒前
牧青发布了新的文献求助10
28秒前
典雅葶完成签到 ,获得积分10
31秒前
32秒前
淡然以柳完成签到 ,获得积分10
33秒前
36秒前
36秒前
尊敬怀薇完成签到,获得积分10
37秒前
yy完成签到,获得积分10
37秒前
花花完成签到 ,获得积分10
38秒前
慕容杏子完成签到,获得积分10
39秒前
lqy1214完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015