Image segmentation using Vision Transformer for tunnel defect assessment

人工智能 计算机视觉 分割 变压器 计算机科学 图像分割 工程类 电气工程 电压
作者
Shaojie Qin,Taiyue Qi,Tao Deng,Xiaodong Huang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
被引量:3
标识
DOI:10.1111/mice.13181
摘要

Abstract Existing tunnel detection methods include crack and water‐leakage segmentation networks. However, if the automated detection algorithm cannot process all defect cases, manual detection is required to eliminate potential risks. The existing intelligent detection methods lack a universal method that can accurately segment all types of defects, particularly when multiple defects are superimposed. To address this issue, a defect segmentation model is proposed based on Vision Transformer (ViT), which is completely different from the network structure of a convolutional neural network. The model proposes an adapter and a decoding head to improve the training effect of the transformer encoder, allowing it to be fitted to small‐scale datasets. In post‐processing, a method is proposed to quantify the threat level for the defects, with the aim of outputting qualitative results that simulate human observation. The model showed impressive results on a real‐world dataset containing 11,781 defect images collected from a real subway tunnel. The visualizing results proved that this method is effective and has uniform criteria for single, multiple, and comprehensive defects. Moreover, the tests proved that the proposed model has a significant advantage in the case of multiple‐defect superposition, and it achieved 93.77%, 88.36%, and 92.93% for mean accuracy (Acc), mean intersection over union, and mean F1‐score, respectively. With similar training parameters, the Acc of the proposed method is improved by more than 10% over the DeepLabv3+, Mask R‐convolutional neural network, and UPerNet‐R50 models and by more than 5% over the Swin Transformer and ViT‐Adapter. This study implemented a general method that can process all defect cases and output the threat evaluation results, thereby making more intelligent tunnel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助无限书蕾采纳,获得10
刚刚
Lucas应助单身的蓝血采纳,获得10
刚刚
3秒前
asadsdas关注了科研通微信公众号
3秒前
HY发布了新的文献求助10
3秒前
3秒前
搜集达人应助DW采纳,获得10
4秒前
万能图书馆应助飘逸若蕊采纳,获得10
5秒前
5秒前
7秒前
标致溪流发布了新的文献求助30
7秒前
妖孽的二狗完成签到 ,获得积分10
7秒前
9秒前
忧郁难胜完成签到,获得积分10
9秒前
soong0330发布了新的文献求助10
10秒前
南鸢完成签到,获得积分10
10秒前
辛谷方松永旭完成签到,获得积分10
10秒前
fbh1完成签到,获得积分10
11秒前
11秒前
11秒前
搜集达人应助qiu采纳,获得10
12秒前
12秒前
赵佳璐发布了新的文献求助10
14秒前
hcy发布了新的文献求助10
16秒前
研究新人完成签到,获得积分10
17秒前
17秒前
17秒前
kiki完成签到,获得积分10
18秒前
NexusExplorer应助DW采纳,获得10
20秒前
caixukun发布了新的文献求助10
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得20
22秒前
清水发布了新的文献求助10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
科研通AI2S应助秀丽大凄采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112