TCDformer: A transformer framework for non-stationary time series forecasting based on trend and change-point detection

可解释性 可预测性 时间序列 系列(地层学) 计算机科学 多层感知器 变压器 数据挖掘 人工智能 人工神经网络 机器学习 数学 统计 生物 物理 量子力学 古生物学 电压
作者
Jiashan Wan,Na Xia,Yutao Yin,Xulei Pan,Jin Hu,Yi Jun
出处
期刊:Neural Networks [Elsevier]
卷期号:173: 106196-106196 被引量:19
标识
DOI:10.1016/j.neunet.2024.106196
摘要

Although time series prediction models based on Transformer architecture have achieved significant advances, concerns have arisen regarding their performance with non-stationary real-world data. Traditional methods often use stabilization techniques to boost predictability, but this often results in the loss of non-stationarity, notably underperforming when tackling major events in practical applications. To address this challenge, this research introduces an innovative method named TCDformer (Trend and Change-point Detection Transformer). TCDformer employs a unique strategy, initially encoding abrupt changes in non-stationary time series using the local linear scaling approximation (LLSA) module. The reconstructed contextual time series is then decomposed into trend and seasonal components. The final prediction results are derived from the additive combination of a multilayer perceptron (MLP) for predicting trend components and wavelet attention mechanisms for seasonal components. Comprehensive experimental results show that on standard time series prediction datasets, TCDformer significantly surpasses existing benchmark models in terms of performance, reducing MSE by 47.36% and MAE by 31.12%. This approach offers an effective framework for managing non-stationary time series, achieving a balance between performance and interpretability, making it especially suitable for addressing non-stationarity challenges in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙畅完成签到 ,获得积分10
1秒前
陈龙发布了新的文献求助10
1秒前
阔达芾发布了新的文献求助20
1秒前
沉静道罡完成签到,获得积分10
3秒前
5秒前
5秒前
xuxuwang1发布了新的文献求助10
5秒前
6秒前
斯文败类应助sunoopp采纳,获得10
9秒前
9秒前
10秒前
10秒前
善学以致用应助小王子采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
yznfly应助科研通管家采纳,获得50
11秒前
yznfly应助科研通管家采纳,获得50
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
LINHY应助科研通管家采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737686
求助须知:如何正确求助?哪些是违规求助? 5373939
关于积分的说明 15336077
捐赠科研通 4881050
什么是DOI,文献DOI怎么找? 2623314
邀请新用户注册赠送积分活动 1572041
关于科研通互助平台的介绍 1528887