Online attention versus knowledge utilization: Exploring how linguistic features of scientific papers influence knowledge diffusion

复杂度 凝聚力(化学) 语言学 计算机科学 心理学 认知心理学 社会学 社会科学 化学 哲学 有机化学
作者
Kejun Chen,Ningyuan Song,Yuehua Zhao,Jiaer Peng,Ye Chen
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103691-103691 被引量:1
标识
DOI:10.1016/j.ipm.2024.103691
摘要

Knowledge diffusion breeds technological innovation and promotes scientific development. In modern times, knowledge is disseminated in both the academic community and on social media. Despite a rich body of researches on factors influencing knowledge diffusion, they pay less attention to linguistic features and mechanisms behind different kinds of knowledge diffusion. To address the research gaps, this study empirically examined how linguistic features (lexical density, lexical sophistication, syntactic complexity, and cohesion) of scientific papers influenced their diffusion. Moreover, we compared the various roles of linguistic features in two knowledge diffusion mechanisms, that is, knowledge utilization and online attention. We first proposed our hypotheses based on the construction-integration model, attention theory, cognitive load theory, and social capital theory. Then, using normalized citation (NC) and normalized altmetric attention scores (NAAS) to measure knowledge utilization and online attention, respectively, regression models on full texts of research papers from PLoS were constructed to identify the effects of linguistic features on knowledge diffusion. Through delicate analyses, the inverted U-shaped relationships between lexical density/lexical sophistication and NC were identified. But cohesion/syntactic complexity had no statistically significant effect on NC. In addition, the U-shaped relationship between lexical density and NAAS, and the inverted U-shaped relationship between lexical sophistication and NAAS were verified. A positive relationship between cohesion/syntactic complexity and NAAS was also found. Then, to further discuss whether there are domain differences in the impact of linguistic features on knowledge diffusion, we conducted a heterogeneity analysis. On the theoretical front, this study provides fresh perspectives to knowledge management literature by incorporating linguistic features and to scientometrics literature by comparing the distinct effects of linguistic features on NC and NAAS. Additionally, this study extends the application of several theories including construction-integration model and cognitive load theory. On the practical front, this study offers insights into the sensible way of academic writing and knowledge promotion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
油菜花完成签到,获得积分10
刚刚
kkk完成签到,获得积分10
刚刚
其实是北北吖完成签到,获得积分10
刚刚
yqsf789发布了新的文献求助10
刚刚
wenhuanwenxian完成签到 ,获得积分10
刚刚
焦明准完成签到,获得积分10
1秒前
梦飞完成签到,获得积分10
1秒前
居然是我完成签到,获得积分10
1秒前
哒哒完成签到,获得积分10
1秒前
sindex完成签到,获得积分10
1秒前
WUYANG发布了新的文献求助10
2秒前
舒适的淇完成签到,获得积分10
3秒前
yi完成签到,获得积分10
3秒前
DADing完成签到,获得积分10
3秒前
临床医学研究中心完成签到,获得积分10
4秒前
淞淞于我完成签到 ,获得积分10
4秒前
yk完成签到 ,获得积分10
4秒前
燕燕发布了新的文献求助10
5秒前
灵寒完成签到 ,获得积分10
5秒前
orixero应助123采纳,获得10
5秒前
zjzjzhujun发布了新的文献求助10
6秒前
题西林壁完成签到,获得积分10
7秒前
Nnaao完成签到 ,获得积分10
7秒前
7秒前
嘟嘟完成签到,获得积分10
7秒前
木南完成签到,获得积分10
8秒前
8秒前
法侣完成签到,获得积分10
8秒前
感动水杯完成签到 ,获得积分10
9秒前
eternal_dreams完成签到 ,获得积分10
9秒前
搜集达人应助winni采纳,获得30
9秒前
Maglev完成签到,获得积分10
9秒前
你帅你有理完成签到,获得积分10
10秒前
浮游应助Tonald Yang采纳,获得10
10秒前
sos完成签到,获得积分10
10秒前
xiaoqianqian174完成签到,获得积分10
10秒前
Sarah完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
可爱的香菇完成签到 ,获得积分10
11秒前
相忘江湖的小余完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883