DNMT3A R882H Exhibits Greater Inflammatory Potential Than R882C in Primary Hematopoietic Stem and Progenitor Cell Knock-in Model and Population Data

生物 转录组 祖细胞 造血 人口 基因表达谱 干细胞 遗传学 分子生物学 基因 基因表达 人口学 社会学
作者
Alexander J. Silver,Donovan Brown,Caitlyn Vlasschaert,Pawan Bhat,Fabio Puddu,Joseph C. Van Amburg,Matthew T. Villaume,Melissa A. Fischer,Maria P. Arrate,Yu Wang,Jamie Scotcher,Kristy R. Stengel,Brianna N. Smith,Brian Sharber,Chad R. Potts,Mark Consugar,J. Brett Heimlich,Yaomin Xu,P. Brent Ferrell,Alexander G. Bick,Michael R. Savona
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 815-815 被引量:2
标识
DOI:10.1182/blood-2023-187244
摘要

Clonal hematopoiesis (CH) is an age-associated phenomenon which is known to increase the risk for hematologic malignancy and cardiovascular disease. The most commonly mutated gene in CH is de novo DNA methyltransferase DNMT3A. R882H and R882C are the most common hotspot mutations in this gene, and these mutations are commonly grouped together in interpretation of clinical data even though in vitro experiments suggest divergence in their biochemical consequences. Here, we used CRISPR knock-in of primary hematopoietic stem and progenitor cells (HSPCs) along with population data from the UK Biobank (UKB) to evaluate the extent to which R882H and R882C differentially predispose to inflammatory phenotypes. Using two homology donor (HD) templates with distinct self-cleaving fluorescent tags, we used FACS to isolate homozygous R882H- or R882C-mutant cells from six unique samples of cord blood HSPCs. We subsequently cultured these isogeneic mutant cells and their mock-electroporated wild-type (WT) controls in monocyte differentiation media and evaluated their transcriptomes via bulk RNA sequencing (RNAseq) and production of secreted cytokines in a Luminex-based assay. Analysis of transcripts using differential expression for repeated measures (Dream) revealed that, when compared to WT, the mutants demonstrated many shared differentially expressed genes (DEGs) but also exhibited many DEGs unique to each variant. Furthermore, gene set enrichment analysis (GSEA) of Hallmark pathways revealed common enrichment of cell cycle related pathways in both variants, but found that R882H displayed greater enrichment of inflammation-related pathways than either WT or R882C (Figure 1A). Rank-order GO and KEGG pathway enrichment comparison of R882H vs R882C showed further evidence of bias in inflammation-related pathways among the most upregulated gene sets (e.g., GO:0019882, Antigen Processing & Presentation and KEGG:hsa04145, Phagosome). IL-6 is significantly regulated by R882 genotype in our model; levels of IL-6 for R882H (13,065 ± 2,446; mean ± s.e. in pg/mL) but not R882C (10,340 ± 2,446) were significantly different than WT (6,281 ± 1,730; p = 0.014). We next sought to better understand if this biased inflammatory priming would also be observed for heterozygous mutations and across different cell types, so using mutant and WT HD templates we performed single cell RNAseq on CRISPR'd heterozygous mutants and knock-in WT controls. Comparing R882H to R882C in this context demonstrated upregulation of numerous inflammation-related genes, including CXCL8 (IL-8), S100A8, and S100A9. GSEA of Hallmark pathways revealed enrichment of inflammatory pathways (e.g., Inflammatory Response & TNFA Signaling via NFKB) in monocytic cells but also in progenitor cells. We then investigated whether these transcriptional differences between R882H and R882C might be due to divergent patterns of DNA (hypo)methylation. Employing 5-letter next-generation sequencing (A, C, G, T, methyl-C), we compared the methylation landscape of three isogeneic donors with homozygous R882H, R882C, or mock-electroporated WT genotypes. As expected, comparison of either mutant to WT showed a global hypomethylation. Comparison of R882H to R882C revealed no systematic bias in methylation of gene promoters but a pervasive hypomethylation of gene bodies. A gene set of the 50 most upregulated genes from our single cell RNAseq experiment was significantly enriched in rank order analysis of R882H vs R882C hypomethylation of gene bodies (NES = 1.47, p = 0.036) but not promoters (NES = -0.86, p = 0.71). Finally, we asked if there were differences in patient phenotypes for those with R882H or R882C clonal hematopoiesis. Here, we used our previously published UKB clonal hematopoiesis cohort (Vlasschaert et al. 2023, Blood). In Cox proportional hazards models controlling for basic demographics (N = 451K) or demographics plus cardiovascular-relevant covariates (N = 390K), we found that R882H but not R882C was associated with significantly greater incidence of heart failure and of a composite measure consisting of death or coronary artery disease (Figure 1B). In conclusion, our study found evidence in experimental models and patient data that DNMT3A R882H may pose a greater risk for inflammatory phenotypes than R882C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
IAMXC发布了新的文献求助10
3秒前
3秒前
漆玖发布了新的文献求助30
3秒前
七个娃娃发布了新的文献求助10
4秒前
4秒前
wulin314发布了新的文献求助10
5秒前
ferry123发布了新的文献求助10
5秒前
无语的凡梦完成签到,获得积分10
6秒前
隐形曼青应助仁爱的雁芙采纳,获得10
6秒前
燕燕发布了新的文献求助10
7秒前
赘婿应助诚心的若南采纳,获得10
8秒前
8秒前
8秒前
chenyinglin完成签到,获得积分10
9秒前
稳重雪冥发布了新的文献求助10
9秒前
810636174完成签到,获得积分10
9秒前
李健应助哭泣老三采纳,获得10
9秒前
我我我发布了新的文献求助10
10秒前
lvbowen发布了新的文献求助20
10秒前
木亢完成签到,获得积分10
10秒前
阿飞完成签到,获得积分10
11秒前
susan发布了新的文献求助10
12秒前
小冰棍发布了新的文献求助10
13秒前
仁爱的雁芙完成签到,获得积分10
14秒前
14秒前
YXYWZMSZ发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助宋嘉新采纳,获得10
16秒前
天真的邴完成签到 ,获得积分10
16秒前
16秒前
星空物语完成签到,获得积分10
17秒前
qhy完成签到,获得积分10
17秒前
18秒前
geold发布了新的文献求助10
19秒前
111发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655