Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree

计算机科学 树(集合论) 卷积(计算机科学) 图形 路径(计算) 数据挖掘 空间分析 树形结构 人工智能 数据结构 地理 理论计算机科学 遥感 数学 人工神经网络 数学分析 程序设计语言
作者
Jianbo Li,Zhiqiang Lv,Zhaobin Ma,Xiaotong Wang,Zhihao Xu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102178-102178 被引量:8
标识
DOI:10.1016/j.inffus.2023.102178
摘要

Taxi is one of the important means of transportation for people's daily travel activities, and it is one of the important research objects of intelligent transportation system. Taxi demand forecasting research can promote the application of urban transportation basic services and the transportation department to analyze and allocate transportation resources more reasonably. Graph structure is an important method for capturing spatial correlations among urban regions. However, it has certain limitations in capturing the hierarchical features and the local path features of regional nodes. Additionally, existing research has failed to capture multiple factors influencing changes in taxi demand. Therefore, this study proposes a spatial-temporal model based on capturing multi-factor features. The model innovatively uses the tree structure as a topology structure and proposes the tree convolution for constructing data spatial distribution features. The spatial-temporal convolution module with tree convolution as the core can effectively capture the hierarchical features and the local path features among area nodes. In this study, four factors affecting taxi demand are designed. The deep features of the four factors are further fused through the spatial-temporal convolution module. The model integrates multiple influencing factors affecting taxi demand from the spatial-temporal level and shows certain advantages in experiments. Compared with existing baselines, the model designed in this paper shows certain advantages in three real urban taxi datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助幸福大白采纳,获得30
1秒前
YJ888发布了新的文献求助10
1秒前
心灵美盼烟完成签到,获得积分20
2秒前
3秒前
5秒前
深情安青应助安详立果采纳,获得10
6秒前
9秒前
陈曦发布了新的文献求助10
9秒前
修辛发布了新的文献求助10
12秒前
佳佳应助好好好采纳,获得10
13秒前
Ava应助等一只ya采纳,获得10
15秒前
16秒前
17秒前
RA000完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
科研通AI5应助YJ888采纳,获得10
19秒前
是安山完成签到,获得积分10
19秒前
是安山发布了新的文献求助10
21秒前
21秒前
21秒前
YanK发布了新的文献求助10
22秒前
归尘发布了新的文献求助10
23秒前
Jay发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
老干部发布了新的文献求助10
25秒前
陈曦发布了新的文献求助10
25秒前
wweiweili完成签到,获得积分10
28秒前
28秒前
28秒前
hmd_150发布了新的文献求助10
28秒前
Sophiaye完成签到,获得积分10
29秒前
风趣依瑶完成签到 ,获得积分10
29秒前
wonder123发布了新的文献求助10
29秒前
Kavin完成签到,获得积分10
30秒前
KK关闭了KK文献求助
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176