Naruto Mobile: AI Sparring Partner Using Heterogeneous Deep Reinforcement Learning

强化学习 计算机科学 一般化 多样性(控制论) 人工智能 比例(比率) 深度学习 电子游戏 人机交互 多媒体 数学 数学分析 物理 量子力学
作者
Elvis S. Liu,Weifan Li,Yuan Zhou,Hugh Cao,Zhengwen Zeng
标识
DOI:10.1109/cog57401.2023.10333204
摘要

Naruto Mobile is a popular mobile Fighting Game with over 100 million registered players. AI agents are deployed extensively to the game for a wide variety of applications such as level challenges and player training, which require them to fight like humans and imitate strong and weak players. Although deep reinforcement learning is an excellent approach to creating agents with diverse behaviors, it is difficult to apply to massive-scale games like Naruto Mobile which is built on a pool of more than 300 characters that have unique skills, speed, and attack range, as a traditional approach of self-play training at such scale may require a substantial computational cost and training time.In this paper, we present a new AI training approach called Heterogeneous Exploitation Self-Play (HESP) to improve AI agent generalization ability in Naruto Mobile and optimize its massive-scale self-play training so that the computational costs and train time are significantly reduced. The proposed algorithm has already been employed by the development team of Naruto Mobile to create AI agents, which, at the time of writing this paper, have been used in more than 300 million human-AI fighting matches. To the best of our knowledge, this is the first time that deep reinforcement learning has been employed by a commercial fighting game.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pl656完成签到,获得积分10
刚刚
MM完成签到,获得积分10
刚刚
1秒前
猫猫头发布了新的文献求助10
1秒前
xjy1521完成签到,获得积分10
1秒前
小蘑菇应助研友_Lpawrn采纳,获得10
1秒前
李小伟完成签到,获得积分10
2秒前
吴大宝发布了新的文献求助10
2秒前
Coisini发布了新的文献求助10
2秒前
爱吃萝卜的Bob完成签到,获得积分10
3秒前
4秒前
hkh发布了新的文献求助10
4秒前
可爱的田果果完成签到,获得积分20
4秒前
鑫搭完成签到,获得积分10
4秒前
烧瓶杀手发布了新的文献求助10
5秒前
之以发布了新的文献求助10
5秒前
姜惠完成签到,获得积分10
5秒前
whisper发布了新的文献求助10
5秒前
5秒前
Crystal完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
核桃应助曾经的碧萱采纳,获得10
7秒前
Lny完成签到,获得积分0
7秒前
7秒前
宁静致远完成签到,获得积分10
8秒前
吴大宝完成签到,获得积分10
8秒前
8秒前
神锋天下完成签到,获得积分10
9秒前
无花果应助鑫搭采纳,获得10
9秒前
azusa完成签到,获得积分10
9秒前
波比冰苏打完成签到,获得积分10
9秒前
Diane完成签到,获得积分10
9秒前
酷酷的安柏完成签到 ,获得积分10
10秒前
烧瓶杀手完成签到,获得积分10
11秒前
11秒前
专注雁芙发布了新的文献求助10
11秒前
砍柴少年发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855