亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Naruto Mobile: AI Sparring Partner Using Heterogeneous Deep Reinforcement Learning

强化学习 计算机科学 一般化 多样性(控制论) 人工智能 比例(比率) 深度学习 电子游戏 人机交互 多媒体 数学 数学分析 物理 量子力学
作者
Elvis S. Liu,Weifan Li,Yuan Zhou,Hugh Cao,Zhengwen Zeng
标识
DOI:10.1109/cog57401.2023.10333204
摘要

Naruto Mobile is a popular mobile Fighting Game with over 100 million registered players. AI agents are deployed extensively to the game for a wide variety of applications such as level challenges and player training, which require them to fight like humans and imitate strong and weak players. Although deep reinforcement learning is an excellent approach to creating agents with diverse behaviors, it is difficult to apply to massive-scale games like Naruto Mobile which is built on a pool of more than 300 characters that have unique skills, speed, and attack range, as a traditional approach of self-play training at such scale may require a substantial computational cost and training time.In this paper, we present a new AI training approach called Heterogeneous Exploitation Self-Play (HESP) to improve AI agent generalization ability in Naruto Mobile and optimize its massive-scale self-play training so that the computational costs and train time are significantly reduced. The proposed algorithm has already been employed by the development team of Naruto Mobile to create AI agents, which, at the time of writing this paper, have been used in more than 300 million human-AI fighting matches. To the best of our knowledge, this is the first time that deep reinforcement learning has been employed by a commercial fighting game.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mol完成签到,获得积分10
5秒前
Nn发布了新的文献求助10
11秒前
Raunio完成签到,获得积分10
13秒前
Banbor2021完成签到,获得积分10
18秒前
30秒前
30秒前
安静的滑板应助Bi8bo采纳,获得10
33秒前
勤恳小李发布了新的文献求助10
34秒前
37秒前
喝粥阿旺发布了新的文献求助10
43秒前
45秒前
威武青亦发布了新的文献求助10
46秒前
研友_ndDGVn完成签到 ,获得积分10
47秒前
Orange应助喝粥阿旺采纳,获得10
48秒前
51秒前
1分钟前
1分钟前
dgjqr发布了新的文献求助10
1分钟前
喝粥阿旺完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zho发布了新的文献求助30
1分钟前
归海梦岚完成签到,获得积分0
1分钟前
1分钟前
潇洒绿蕊完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
威武青亦完成签到 ,获得积分10
1分钟前
Orange应助dgjqr采纳,获得30
1分钟前
lazysheep完成签到,获得积分10
1分钟前
只如初完成签到,获得积分10
1分钟前
dgjqr完成签到,获得积分10
1分钟前
1分钟前
2分钟前
95完成签到 ,获得积分10
2分钟前
天天快乐应助茜茜采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198526
捐赠科研通 2544692
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774