Network Slicing Based Learning Techniques for IoV in 5G and Beyond Networks

切片 计算机科学 计算机网络 人工智能 万维网
作者
Wafa Hamdi,Chahrazed Ksouri,Hasan Bulut,Mohamed Mosbah
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:26 (3): 1989-2047 被引量:3
标识
DOI:10.1109/comst.2024.3372083
摘要

The effects of transport development on people's lives are diverse, ranging from economy to tourism, health care, etc. Great progress has been made in this area, which has led to the emergence of the Internet of Vehicles (IoV) concept. The main objective of this concept is to offer a safer and more comfortable travel experience through making available a vast array of applications, by relying on a range of communication technologies including the fifth-generation mobile networks. The proposed applications have personalized Quality of Service (QoS) requirements, which raise new challenging issues for the management and allocation of resources. Currently, this interest has been doubled with the start of the discussion of the sixth-generation mobile networks. In this context, Network Slicing (NS) was presented as one of the key technologies in the 5G architecture to address these challenges. In this article, we try to bring together the effects of NS implications in the Internet of Vehicles field and show the impact on transport development. We begin by reviewing the state of the art of NS in IoV in terms of architecture, types, life cycle, enabling technologies, network parts, and evolution within cellular networks. Then, we discuss the benefits brought by the use of NS in such a dynamic environment, along with the technical challenges. Moreover, we provide a comprehensive review of NS deploying various aspects of Learning Techniques for the Internet of Vehicles. Afterwards, we present Network Slicing utilization in different IoV application scenarios through different domains; terrestrial, aerial, and marine. In addition, we review Vehicle-to-Everything (V2X) datasets as well as existing implementation tools; besides presenting a concise summary of the Network Slicing-related projects that have an impact on IoV. Finally, in order to promote the deployment of Network Slicing in IoV, we provide some directions for future research work. We believe that the survey will be useful for researchers from academia and industry. First, to acquire a holistic vision regarding IoV-based NS realization and identify the challenges hindering it. Second, to understand the progression of IoV powered NS applications in the different fields (terrestrial, aerial, and marine). Finally, to determine the opportunities for using Machine Learning Techniques (MLT), in order to propose their own solutions to foster NS-IoV integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分20
刚刚
3秒前
小云完成签到,获得积分10
5秒前
柯仇天发布了新的文献求助30
8秒前
iNk应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得80
9秒前
耀学菜菜应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
宜醉宜游宜睡应助小爽采纳,获得10
11秒前
申思发布了新的文献求助10
11秒前
梅一一完成签到,获得积分10
11秒前
11秒前
晴空万里完成签到,获得积分10
15秒前
xixihaha完成签到,获得积分10
15秒前
科科完成签到 ,获得积分10
16秒前
wuhu发布了新的文献求助10
16秒前
zz完成签到,获得积分10
16秒前
酷炫的傲旋完成签到,获得积分10
16秒前
aaa完成签到,获得积分10
17秒前
19秒前
小爽完成签到,获得积分10
21秒前
科研通AI2S应助奇奇吃面采纳,获得30
22秒前
23秒前
23秒前
irisxxxx完成签到,获得积分10
23秒前
一口吃三个月亮完成签到,获得积分10
24秒前
闲尾完成签到,获得积分10
24秒前
腼腆的乐安完成签到,获得积分10
26秒前
Roxanne完成签到,获得积分10
27秒前
CodeCraft应助申思采纳,获得10
28秒前
XZY发布了新的文献求助10
28秒前
烟花应助柯仇天采纳,获得10
30秒前
Zz完成签到 ,获得积分10
30秒前
33秒前
搜集达人应助ppppp采纳,获得10
34秒前
ppppp完成签到,获得积分10
38秒前
Darren发布了新的文献求助50
38秒前
闪闪元芹完成签到,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023