已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-stream feature fusion network for person re-identification

计算机科学 判别式 人工智能 RGB颜色模型 模式识别(心理学) 联营 特征(语言学) 灰度 嵌入 计算机视觉 鉴定(生物学) 图像(数学) 哲学 语言学 植物 生物
作者
Wenbin Zhang,Zhaoyang Li,Haishun Du,Jiangang Tong,Zhihua Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107888-107888 被引量:1
标识
DOI:10.1016/j.engappai.2024.107888
摘要

Person re-identification (Re-ID) has made significant progress in recent years. However, it still faces numerous challenges in real scenarios. Although researchers have proposed various solutions, the issue of similar clothing colors remains an obstacle in improving the performance of person re-identification. To solve this issue, we propose a dual-stream feature fusion network (DSFF-Net) to extract discriminative features from pedestrian images in two color spaces. Specifically, a dual-stream network is designed to extract RGB global features, grayscale global features, and local features of pedestrian images to increase the richness of pedestrian representations. A channel attention module is designed to direct the network to focus on the salient features of pedestrians. An embedding mixed pooling is designed, which integrates the outputs of global average pooling (GAP) and global max pooling (GMP) to obtain more discriminative global features. Besides, it can also remove redundant information and increase the discrimination of pedestrian representations. A fine-grained local feature embedding fusion operation is designed to obtain more discriminative local features by embedding and fusing fine-grained local features of RGB and grayscale pedestrian images. Since the final pedestrian representation fuses both global features and fine-grained discriminative features in RGB and grayscale spaces, DSFF-Net increases the discriminative capability and richness of pedestrian representations. Moreover, we conduct extensive experiments on three datasets, Market-1501 DukeMTMC-Reid, and CUHK03, and our method achieves the Rank-1/mAP of 95.9%/89.1%, 89.0%/79.2%, and 81.2%/78.7%, respectively. Experimental results show that the performance of DSFF-Net is better than those of most of the state-of-the-art person Re-ID methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
乐乐应助倒影采纳,获得10
4秒前
夜乡晨发布了新的文献求助10
6秒前
6秒前
虚拟的饼干完成签到,获得积分10
9秒前
10秒前
11秒前
酷波er应助rivalsdd采纳,获得30
12秒前
13秒前
13秒前
13秒前
思源应助虚拟的饼干采纳,获得10
14秒前
夜乡晨完成签到,获得积分10
15秒前
mmm发布了新的文献求助10
17秒前
Owen应助bukeshuo采纳,获得10
18秒前
倒影发布了新的文献求助10
19秒前
yu完成签到,获得积分10
20秒前
共享精神应助55666采纳,获得10
20秒前
Jasper应助wdwa采纳,获得10
21秒前
lulu完成签到 ,获得积分10
22秒前
22秒前
22秒前
WuYiHHH完成签到,获得积分10
22秒前
小子发布了新的文献求助10
26秒前
zx完成签到,获得积分10
26秒前
JZ1640发布了新的文献求助10
27秒前
mmm完成签到,获得积分10
28秒前
敖启航完成签到,获得积分10
28秒前
bukeshuo发布了新的文献求助10
29秒前
30秒前
30秒前
30秒前
31秒前
55666发布了新的文献求助10
33秒前
34秒前
botanist完成签到 ,获得积分10
35秒前
小子完成签到,获得积分10
35秒前
wdwa发布了新的文献求助10
35秒前
wushuimei完成签到 ,获得积分10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129