亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-stream feature fusion network for person re-identification

计算机科学 判别式 人工智能 RGB颜色模型 模式识别(心理学) 联营 特征(语言学) 灰度 嵌入 计算机视觉 鉴定(生物学) 图像(数学) 语言学 植物 生物 哲学
作者
Wenbin Zhang,Zhaoyang Li,Haishun Du,Jiangang Tong,Zhihua Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107888-107888 被引量:16
标识
DOI:10.1016/j.engappai.2024.107888
摘要

Person re-identification (Re-ID) has made significant progress in recent years. However, it still faces numerous challenges in real scenarios. Although researchers have proposed various solutions, the issue of similar clothing colors remains an obstacle in improving the performance of person re-identification. To solve this issue, we propose a dual-stream feature fusion network (DSFF-Net) to extract discriminative features from pedestrian images in two color spaces. Specifically, a dual-stream network is designed to extract RGB global features, grayscale global features, and local features of pedestrian images to increase the richness of pedestrian representations. A channel attention module is designed to direct the network to focus on the salient features of pedestrians. An embedding mixed pooling is designed, which integrates the outputs of global average pooling (GAP) and global max pooling (GMP) to obtain more discriminative global features. Besides, it can also remove redundant information and increase the discrimination of pedestrian representations. A fine-grained local feature embedding fusion operation is designed to obtain more discriminative local features by embedding and fusing fine-grained local features of RGB and grayscale pedestrian images. Since the final pedestrian representation fuses both global features and fine-grained discriminative features in RGB and grayscale spaces, DSFF-Net increases the discriminative capability and richness of pedestrian representations. Moreover, we conduct extensive experiments on three datasets, Market-1501 DukeMTMC-Reid, and CUHK03, and our method achieves the Rank-1/mAP of 95.9%/89.1%, 89.0%/79.2%, and 81.2%/78.7%, respectively. Experimental results show that the performance of DSFF-Net is better than those of most of the state-of-the-art person Re-ID methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoumiga完成签到,获得积分20
1秒前
1秒前
5秒前
5秒前
璐璐姐最牛逼完成签到,获得积分10
8秒前
朴实剑通发布了新的文献求助10
8秒前
木有完成签到 ,获得积分10
14秒前
负责的元柏完成签到,获得积分10
15秒前
20秒前
CodeCraft应助dj采纳,获得20
21秒前
gentalguy发布了新的文献求助10
25秒前
思源应助白奕采纳,获得10
27秒前
叶克思完成签到 ,获得积分10
31秒前
martin完成签到 ,获得积分10
32秒前
35秒前
黎明深雪完成签到 ,获得积分10
35秒前
YAKI关注了科研通微信公众号
36秒前
yuanyuan发布了新的文献求助10
39秒前
orixero应助youyou采纳,获得10
39秒前
Owen应助朱摩玑采纳,获得10
39秒前
49秒前
dj完成签到,获得积分10
51秒前
syalonyui完成签到,获得积分10
54秒前
YAKI发布了新的文献求助10
54秒前
56秒前
充电宝应助余闻问采纳,获得10
57秒前
ooo完成签到 ,获得积分10
59秒前
Criminology34应助科研通管家采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
瀛瀛完成签到 ,获得积分0
1分钟前
wtl发布了新的文献求助10
1分钟前
1分钟前
yanghao完成签到,获得积分10
1分钟前
基金中中中完成签到,获得积分10
1分钟前
1分钟前
1分钟前
fengyun1990发布了新的文献求助10
1分钟前
斯文败类应助yuanyuan采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898