Dual-stream feature fusion network for person re-identification

计算机科学 判别式 人工智能 RGB颜色模型 模式识别(心理学) 联营 特征(语言学) 灰度 嵌入 计算机视觉 鉴定(生物学) 图像(数学) 语言学 植物 生物 哲学
作者
Wenbin Zhang,Zhaoyang Li,Haishun Du,Jiangang Tong,Zhihua Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:131: 107888-107888 被引量:5
标识
DOI:10.1016/j.engappai.2024.107888
摘要

Person re-identification (Re-ID) has made significant progress in recent years. However, it still faces numerous challenges in real scenarios. Although researchers have proposed various solutions, the issue of similar clothing colors remains an obstacle in improving the performance of person re-identification. To solve this issue, we propose a dual-stream feature fusion network (DSFF-Net) to extract discriminative features from pedestrian images in two color spaces. Specifically, a dual-stream network is designed to extract RGB global features, grayscale global features, and local features of pedestrian images to increase the richness of pedestrian representations. A channel attention module is designed to direct the network to focus on the salient features of pedestrians. An embedding mixed pooling is designed, which integrates the outputs of global average pooling (GAP) and global max pooling (GMP) to obtain more discriminative global features. Besides, it can also remove redundant information and increase the discrimination of pedestrian representations. A fine-grained local feature embedding fusion operation is designed to obtain more discriminative local features by embedding and fusing fine-grained local features of RGB and grayscale pedestrian images. Since the final pedestrian representation fuses both global features and fine-grained discriminative features in RGB and grayscale spaces, DSFF-Net increases the discriminative capability and richness of pedestrian representations. Moreover, we conduct extensive experiments on three datasets, Market-1501 DukeMTMC-Reid, and CUHK03, and our method achieves the Rank-1/mAP of 95.9%/89.1%, 89.0%/79.2%, and 81.2%/78.7%, respectively. Experimental results show that the performance of DSFF-Net is better than those of most of the state-of-the-art person Re-ID methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feizhuliu发布了新的文献求助10
刚刚
刚刚
2秒前
2秒前
3秒前
室内设计发布了新的文献求助10
4秒前
锅包肉爱吃肉完成签到 ,获得积分10
4秒前
居崽完成签到 ,获得积分10
4秒前
汉堡包应助yecheng采纳,获得10
5秒前
ZY发布了新的文献求助10
5秒前
feizhuliu完成签到,获得积分20
6秒前
6秒前
7秒前
JJ完成签到,获得积分10
8秒前
莫莉完成签到,获得积分10
8秒前
赘婿应助板凳采纳,获得10
10秒前
11秒前
粗心的胜完成签到,获得积分10
12秒前
杋困了完成签到 ,获得积分10
12秒前
egnaro完成签到,获得积分10
13秒前
13秒前
李驰完成签到 ,获得积分10
13秒前
叶子关注了科研通微信公众号
13秒前
14秒前
xixi完成签到 ,获得积分10
14秒前
婷婷子完成签到,获得积分10
15秒前
ding应助ly采纳,获得10
15秒前
15秒前
15秒前
英俊的铭应助曾经问玉采纳,获得10
16秒前
18秒前
18秒前
WYJie发布了新的文献求助10
18秒前
egnaro发布了新的文献求助10
19秒前
Jeffery426发布了新的文献求助200
19秒前
所所应助热心的诗蕊采纳,获得10
19秒前
我是老大应助ffchen111采纳,获得10
20秒前
tangz发布了新的文献求助10
20秒前
ira完成签到,获得积分10
21秒前
张雪敏完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451