Coronary heart disease prediction based on hybrid deep learning

过度拟合 计算机科学 人工智能 机器学习 人工神经网络 预测建模 深度学习 试验装置 计算机辅助设计 交叉验证 特征(语言学) 数据挖掘 语言学 哲学 工程制图 工程类
作者
Feng Li,Yi Chen,Hongzeng Xu
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (1) 被引量:12
标识
DOI:10.1063/5.0172368
摘要

Machine learning provides increasingly reliable assistance for medical experts in diagnosing coronary heart disease. This study proposes a deep learning hybrid model based coronary heart disease (CAD) prediction method, which can significantly improve the prediction accuracy compared to traditional solutions. This research scheme is based on the data of 7291 patients and proposes a hybrid model, which uses two different deep neural network models and a recurrent neural network model as the main model for training. The prediction results based on the main model training use a k-nearest neighbor model for secondary training so as to improve the accuracy of coronary heart disease prediction. The comparison between the model prediction results and the clinical diagnostic results shows that the prediction model has a prediction accuracy rate of 82.8%, a prediction precision rate of 87.08%, a prediction recall rate of 88.57%, a prediction F1-score of 87.82%, and an area under the curve value of 0.8 in the test set. Compared to single model machine learning predictions, the hybrid model has a significantly improved accuracy and has effectively solved the problem of overfitting. A deep learning based CAD prediction hybrid model that combines multiple weak models into a strong model can fully explore the complex inter-relationships between various features under limited feature values and sample size, improve the evaluation indicators of the prediction model, and provide effective auxiliary support for CAD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺颂时祺发布了新的文献求助10
刚刚
姜水完成签到,获得积分10
1秒前
3秒前
JamesPei应助大胆的迎梦采纳,获得10
3秒前
4秒前
科研通AI2S应助拿抓抓拿采纳,获得10
5秒前
cherish完成签到,获得积分10
5秒前
隐形曼青应助寒冷天亦采纳,获得10
5秒前
无神完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
脑洞疼应助白衣修身采纳,获得10
7秒前
浮游应助mhpvv采纳,获得10
7秒前
8秒前
风吹草动玉米粒完成签到,获得积分10
8秒前
8秒前
lsl应助顺颂时祺采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
小马甲应助狠狠搞科研采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
月圆夜应助科研通管家采纳,获得50
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得30
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得30
9秒前
wanci应助科研通管家采纳,获得10
9秒前
求助人员应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
spc68应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548