Coronary heart disease prediction based on hybrid deep learning

过度拟合 计算机科学 人工智能 机器学习 人工神经网络 预测建模 深度学习 试验装置 计算机辅助设计 交叉验证 特征(语言学) 数据挖掘 语言学 工程类 哲学 工程制图
作者
Feng Li,Yi Chen,Hongzeng Xu
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (1) 被引量:1
标识
DOI:10.1063/5.0172368
摘要

Machine learning provides increasingly reliable assistance for medical experts in diagnosing coronary heart disease. This study proposes a deep learning hybrid model based coronary heart disease (CAD) prediction method, which can significantly improve the prediction accuracy compared to traditional solutions. This research scheme is based on the data of 7291 patients and proposes a hybrid model, which uses two different deep neural network models and a recurrent neural network model as the main model for training. The prediction results based on the main model training use a k-nearest neighbor model for secondary training so as to improve the accuracy of coronary heart disease prediction. The comparison between the model prediction results and the clinical diagnostic results shows that the prediction model has a prediction accuracy rate of 82.8%, a prediction precision rate of 87.08%, a prediction recall rate of 88.57%, a prediction F1-score of 87.82%, and an area under the curve value of 0.8 in the test set. Compared to single model machine learning predictions, the hybrid model has a significantly improved accuracy and has effectively solved the problem of overfitting. A deep learning based CAD prediction hybrid model that combines multiple weak models into a strong model can fully explore the complex inter-relationships between various features under limited feature values and sample size, improve the evaluation indicators of the prediction model, and provide effective auxiliary support for CAD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助嗯_好采纳,获得10
刚刚
butaishao完成签到,获得积分10
刚刚
杨炀发布了新的文献求助10
1秒前
Bryan应助llullalla采纳,获得10
3秒前
杨炀完成签到,获得积分20
6秒前
7秒前
李健应助默默衣采纳,获得10
7秒前
能干的谷蕊完成签到 ,获得积分10
10秒前
知秋完成签到,获得积分10
10秒前
ll应助畅快的枫采纳,获得10
10秒前
大帅哥发布了新的文献求助10
11秒前
Hello应助啊啊的采纳,获得10
12秒前
六初完成签到 ,获得积分10
12秒前
长情箴完成签到 ,获得积分10
13秒前
SYLH应助青春采纳,获得10
18秒前
20秒前
翠花发布了新的文献求助10
20秒前
ding应助风马少年采纳,获得10
20秒前
23秒前
李健应助shinn采纳,获得10
26秒前
Zll完成签到,获得积分10
27秒前
啊啊的发布了新的文献求助10
28秒前
蓝天完成签到,获得积分10
28秒前
上官若男应助TJC采纳,获得10
30秒前
32秒前
32秒前
36秒前
YGYANG发布了新的文献求助10
36秒前
38秒前
翠花发布了新的文献求助10
38秒前
王359发布了新的文献求助10
38秒前
bias完成签到,获得积分10
38秒前
秀丽的依云完成签到 ,获得积分10
38秒前
深味i完成签到,获得积分10
39秒前
华仔应助科研通管家采纳,获得10
41秒前
李健应助科研通管家采纳,获得10
41秒前
丘比特应助科研通管家采纳,获得10
41秒前
无花果应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
Hello应助科研通管家采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488