Coronary heart disease prediction based on hybrid deep learning

过度拟合 计算机科学 人工智能 机器学习 人工神经网络 预测建模 深度学习 试验装置 计算机辅助设计 交叉验证 特征(语言学) 数据挖掘 语言学 哲学 工程制图 工程类
作者
Feng Li,Yi Chen,Hongzeng Xu
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (1) 被引量:9
标识
DOI:10.1063/5.0172368
摘要

Machine learning provides increasingly reliable assistance for medical experts in diagnosing coronary heart disease. This study proposes a deep learning hybrid model based coronary heart disease (CAD) prediction method, which can significantly improve the prediction accuracy compared to traditional solutions. This research scheme is based on the data of 7291 patients and proposes a hybrid model, which uses two different deep neural network models and a recurrent neural network model as the main model for training. The prediction results based on the main model training use a k-nearest neighbor model for secondary training so as to improve the accuracy of coronary heart disease prediction. The comparison between the model prediction results and the clinical diagnostic results shows that the prediction model has a prediction accuracy rate of 82.8%, a prediction precision rate of 87.08%, a prediction recall rate of 88.57%, a prediction F1-score of 87.82%, and an area under the curve value of 0.8 in the test set. Compared to single model machine learning predictions, the hybrid model has a significantly improved accuracy and has effectively solved the problem of overfitting. A deep learning based CAD prediction hybrid model that combines multiple weak models into a strong model can fully explore the complex inter-relationships between various features under limited feature values and sample size, improve the evaluation indicators of the prediction model, and provide effective auxiliary support for CAD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助小美采纳,获得10
1秒前
12345完成签到,获得积分10
1秒前
Dloftdv完成签到 ,获得积分10
2秒前
小杭76应助wocao采纳,获得10
2秒前
黄丹丽发布了新的文献求助10
2秒前
tkxfy完成签到,获得积分10
3秒前
顺利毕业耶耶耶完成签到,获得积分10
3秒前
QAQ发布了新的文献求助30
4秒前
Rn发布了新的文献求助10
4秒前
5秒前
6秒前
Leon完成签到,获得积分10
6秒前
221完成签到,获得积分10
6秒前
华仔完成签到,获得积分10
6秒前
iNk应助酷酷的山雁采纳,获得10
9秒前
陈慧钦发布了新的文献求助10
9秒前
9秒前
tiatia应助5999采纳,获得10
9秒前
11秒前
香蕉觅云应助Lee采纳,获得10
12秒前
充电宝应助研友_8Kedgn采纳,获得10
13秒前
研研发布了新的文献求助10
13秒前
汉堡包应助blueskyzhi采纳,获得10
13秒前
皮蛋完成签到,获得积分10
15秒前
15秒前
鱼贝贝完成签到 ,获得积分10
17秒前
懒洋洋完成签到 ,获得积分10
19秒前
yaxuandeng完成签到,获得积分10
20秒前
20秒前
浮游应助wocao采纳,获得10
21秒前
Lee发布了新的文献求助10
23秒前
24秒前
deeperection发布了新的文献求助10
26秒前
28秒前
丘比特应助ahfjk采纳,获得10
29秒前
youxiu完成签到 ,获得积分10
29秒前
30秒前
dolabmu完成签到 ,获得积分10
31秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429