清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer

医学 宫颈癌 磁共振成像 Lasso(编程语言) 放射科 无线电技术 单变量分析 淋巴结 深度学习 逻辑回归 癌症 人工智能 多元分析 内科学 计算机科学 万维网
作者
Haowen Yan,Guoxin Huang,Zhiyuan Yang,Yirong Chen,Zhiming Xiang
标识
DOI:10.1007/s10278-023-00906-w
摘要

Deep stromal invasion is an important pathological factor associated with the treatments and prognosis of cervical cancer patients. Accurate determination of deep stromal invasion before radical hysterectomy (RH) is of great value for early clinical treatment decision-making and improving the prognosis of these patients. Machine learning is gradually applied in the construction of clinical models to improve the accuracy of clinical diagnosis or prediction, but whether machine learning can improve the preoperative diagnosis accuracy of deep stromal invasion in patients with cervical cancer was still unclear. This cross-sectional study was to construct three preoperative diagnostic models for deep stromal invasion in patients with early cervical cancer based on clinical, radiomics, and clinical combined radiomics data using the machine learning method. We enrolled 229 patients with early cervical cancer receiving RH combined with pelvic lymph node dissection (PLND). The least absolute shrinkage and selection operator (LASSO) and the fivefold cross-validation were applied to screen out radiomics features. Univariate and multivariate logistic regression analyses were applied to identify clinical predictors. All subjects were divided into the training set (n = 160) and testing set (n = 69) at a ratio of 7:3. Three light gradient boosting machine (LightGBM) models were constructed in the training set and verified in the testing set. The radiomics features were statistically different between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group. In the training set, the area under the curve (AUC) of the prediction model based on radiomics features was 0.951 (95% confidence interval (CI) 0.922-0.980), the AUC of the prediction model based on clinical predictors was 0.769 (95% CI 0.703-0.835), and the AUC of the prediction model based on radiomics features and clinical predictors was 0.969 (95% CI 0.947-0.990). The AUC of the prediction model based on radiomics features and clinical predictors was 0.914 (95% CI 0.848-0.980) in the testing set. The prediction model for deep stromal invasion in patients with early cervical cancer based on clinical and radiomics data exhibited good predictive performance with an AUC of 0.969, which might help the clinicians early identify patients with high risk of deep stromal invasion and provide timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报阿良求助涉嫌违规
8秒前
馆长举报马也君求助涉嫌违规
25秒前
27秒前
量子星尘发布了新的文献求助10
32秒前
馆长举报无语的玉米求助涉嫌违规
44秒前
快乐学习每一天完成签到 ,获得积分10
45秒前
菠萝包完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
gege完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
馆长举报英吉利25求助涉嫌违规
3分钟前
馆长举报四月求助涉嫌违规
4分钟前
4分钟前
4分钟前
顺利的雁梅完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
6分钟前
RLLLLLLL完成签到 ,获得积分10
6分钟前
6分钟前
yangxi发布了新的文献求助10
6分钟前
研友_VZG7GZ应助yangxi采纳,获得10
6分钟前
yangxi完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
BinBlues完成签到,获得积分10
7分钟前
7分钟前
8分钟前
vicky完成签到 ,获得积分10
8分钟前
冷傲半邪完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877