已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer

医学 宫颈癌 磁共振成像 Lasso(编程语言) 放射科 无线电技术 单变量分析 淋巴结 深度学习 逻辑回归 癌症 人工智能 多元分析 内科学 计算机科学 万维网
作者
Haowen Yan,Guoxin Huang,Zhiyuan Yang,Yirong Chen,Zhiming Xiang
标识
DOI:10.1007/s10278-023-00906-w
摘要

Deep stromal invasion is an important pathological factor associated with the treatments and prognosis of cervical cancer patients. Accurate determination of deep stromal invasion before radical hysterectomy (RH) is of great value for early clinical treatment decision-making and improving the prognosis of these patients. Machine learning is gradually applied in the construction of clinical models to improve the accuracy of clinical diagnosis or prediction, but whether machine learning can improve the preoperative diagnosis accuracy of deep stromal invasion in patients with cervical cancer was still unclear. This cross-sectional study was to construct three preoperative diagnostic models for deep stromal invasion in patients with early cervical cancer based on clinical, radiomics, and clinical combined radiomics data using the machine learning method. We enrolled 229 patients with early cervical cancer receiving RH combined with pelvic lymph node dissection (PLND). The least absolute shrinkage and selection operator (LASSO) and the fivefold cross-validation were applied to screen out radiomics features. Univariate and multivariate logistic regression analyses were applied to identify clinical predictors. All subjects were divided into the training set (n = 160) and testing set (n = 69) at a ratio of 7:3. Three light gradient boosting machine (LightGBM) models were constructed in the training set and verified in the testing set. The radiomics features were statistically different between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group. In the training set, the area under the curve (AUC) of the prediction model based on radiomics features was 0.951 (95% confidence interval (CI) 0.922-0.980), the AUC of the prediction model based on clinical predictors was 0.769 (95% CI 0.703-0.835), and the AUC of the prediction model based on radiomics features and clinical predictors was 0.969 (95% CI 0.947-0.990). The AUC of the prediction model based on radiomics features and clinical predictors was 0.914 (95% CI 0.848-0.980) in the testing set. The prediction model for deep stromal invasion in patients with early cervical cancer based on clinical and radiomics data exhibited good predictive performance with an AUC of 0.969, which might help the clinicians early identify patients with high risk of deep stromal invasion and provide timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Setlla完成签到 ,获得积分10
2秒前
小虎发布了新的文献求助30
4秒前
ling361完成签到,获得积分10
8秒前
9秒前
9秒前
duxh123完成签到 ,获得积分10
10秒前
Vivian完成签到,获得积分10
11秒前
qqq完成签到 ,获得积分10
12秒前
YY完成签到,获得积分10
15秒前
Jasper应助鹏哥爱科研采纳,获得10
16秒前
16秒前
小鱼完成签到,获得积分10
17秒前
长情如豹完成签到 ,获得积分10
19秒前
单薄怜寒完成签到 ,获得积分10
21秒前
22秒前
澜生完成签到,获得积分10
26秒前
dll完成签到 ,获得积分10
27秒前
27秒前
向日葵发布了新的文献求助20
29秒前
科研通AI2S应助ly采纳,获得10
32秒前
kxy完成签到,获得积分10
32秒前
布同完成签到,获得积分10
39秒前
wanci应助zy采纳,获得10
40秒前
陶醉的蜜蜂完成签到 ,获得积分10
40秒前
TearMarks完成签到 ,获得积分10
42秒前
天润佳苑完成签到,获得积分10
42秒前
鹏哥爱科研完成签到,获得积分10
42秒前
研友_LMpo68完成签到 ,获得积分10
43秒前
苏格拉没有底完成签到 ,获得积分10
46秒前
顾矜应助向日葵采纳,获得10
46秒前
48秒前
玥月完成签到 ,获得积分10
48秒前
49秒前
托伐普坦完成签到 ,获得积分10
50秒前
任博文完成签到 ,获得积分10
51秒前
51秒前
莫休完成签到 ,获得积分10
52秒前
D1fficulty完成签到 ,获得积分10
52秒前
52秒前
碧蓝板栗发布了新的文献求助20
53秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330336
求助须知:如何正确求助?哪些是违规求助? 2959888
关于积分的说明 8597669
捐赠科研通 2638476
什么是DOI,文献DOI怎么找? 1444389
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656720