Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer

医学 宫颈癌 磁共振成像 Lasso(编程语言) 放射科 无线电技术 单变量分析 淋巴结 深度学习 逻辑回归 癌症 人工智能 多元分析 内科学 计算机科学 万维网
作者
Haowen Yan,Guoxin Huang,Zhiyuan Yang,Yirong Chen,Zhiming Xiang
标识
DOI:10.1007/s10278-023-00906-w
摘要

Deep stromal invasion is an important pathological factor associated with the treatments and prognosis of cervical cancer patients. Accurate determination of deep stromal invasion before radical hysterectomy (RH) is of great value for early clinical treatment decision-making and improving the prognosis of these patients. Machine learning is gradually applied in the construction of clinical models to improve the accuracy of clinical diagnosis or prediction, but whether machine learning can improve the preoperative diagnosis accuracy of deep stromal invasion in patients with cervical cancer was still unclear. This cross-sectional study was to construct three preoperative diagnostic models for deep stromal invasion in patients with early cervical cancer based on clinical, radiomics, and clinical combined radiomics data using the machine learning method. We enrolled 229 patients with early cervical cancer receiving RH combined with pelvic lymph node dissection (PLND). The least absolute shrinkage and selection operator (LASSO) and the fivefold cross-validation were applied to screen out radiomics features. Univariate and multivariate logistic regression analyses were applied to identify clinical predictors. All subjects were divided into the training set (n = 160) and testing set (n = 69) at a ratio of 7:3. Three light gradient boosting machine (LightGBM) models were constructed in the training set and verified in the testing set. The radiomics features were statistically different between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group. In the training set, the area under the curve (AUC) of the prediction model based on radiomics features was 0.951 (95% confidence interval (CI) 0.922-0.980), the AUC of the prediction model based on clinical predictors was 0.769 (95% CI 0.703-0.835), and the AUC of the prediction model based on radiomics features and clinical predictors was 0.969 (95% CI 0.947-0.990). The AUC of the prediction model based on radiomics features and clinical predictors was 0.914 (95% CI 0.848-0.980) in the testing set. The prediction model for deep stromal invasion in patients with early cervical cancer based on clinical and radiomics data exhibited good predictive performance with an AUC of 0.969, which might help the clinicians early identify patients with high risk of deep stromal invasion and provide timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿雷发布了新的文献求助10
刚刚
久久应助凯文采纳,获得10
1秒前
1秒前
zzjl发布了新的文献求助10
2秒前
Kang完成签到,获得积分10
2秒前
3秒前
枫叶完成签到 ,获得积分10
3秒前
4秒前
黄文燕完成签到 ,获得积分20
4秒前
zhangling完成签到,获得积分10
4秒前
栗子鱼完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
思源应助lily采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
顺心飞雪完成签到,获得积分10
8秒前
华仔应助facaihua采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
djiwisksk66应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126