Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer

医学 宫颈癌 磁共振成像 Lasso(编程语言) 放射科 无线电技术 单变量分析 淋巴结 深度学习 逻辑回归 癌症 人工智能 多元分析 内科学 计算机科学 万维网
作者
Haowen Yan,Guoxin Huang,Zhiyuan Yang,Yirong Chen,Zhiming Xiang
标识
DOI:10.1007/s10278-023-00906-w
摘要

Deep stromal invasion is an important pathological factor associated with the treatments and prognosis of cervical cancer patients. Accurate determination of deep stromal invasion before radical hysterectomy (RH) is of great value for early clinical treatment decision-making and improving the prognosis of these patients. Machine learning is gradually applied in the construction of clinical models to improve the accuracy of clinical diagnosis or prediction, but whether machine learning can improve the preoperative diagnosis accuracy of deep stromal invasion in patients with cervical cancer was still unclear. This cross-sectional study was to construct three preoperative diagnostic models for deep stromal invasion in patients with early cervical cancer based on clinical, radiomics, and clinical combined radiomics data using the machine learning method. We enrolled 229 patients with early cervical cancer receiving RH combined with pelvic lymph node dissection (PLND). The least absolute shrinkage and selection operator (LASSO) and the fivefold cross-validation were applied to screen out radiomics features. Univariate and multivariate logistic regression analyses were applied to identify clinical predictors. All subjects were divided into the training set (n = 160) and testing set (n = 69) at a ratio of 7:3. Three light gradient boosting machine (LightGBM) models were constructed in the training set and verified in the testing set. The radiomics features were statistically different between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group. In the training set, the area under the curve (AUC) of the prediction model based on radiomics features was 0.951 (95% confidence interval (CI) 0.922-0.980), the AUC of the prediction model based on clinical predictors was 0.769 (95% CI 0.703-0.835), and the AUC of the prediction model based on radiomics features and clinical predictors was 0.969 (95% CI 0.947-0.990). The AUC of the prediction model based on radiomics features and clinical predictors was 0.914 (95% CI 0.848-0.980) in the testing set. The prediction model for deep stromal invasion in patients with early cervical cancer based on clinical and radiomics data exhibited good predictive performance with an AUC of 0.969, which might help the clinicians early identify patients with high risk of deep stromal invasion and provide timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱仙人掌完成签到,获得积分10
1秒前
ywang发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
ewqw关注了科研通微信公众号
4秒前
曦小蕊完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
奋斗灵波发布了新的文献求助10
6秒前
药学牛马发布了新的文献求助10
6秒前
6秒前
科研通AI5应助WZ0904采纳,获得10
7秒前
叶未晞yi发布了新的文献求助10
8秒前
ipeakkka发布了新的文献求助10
9秒前
Jzhang应助迷人的映雁采纳,获得10
9秒前
9秒前
zzz完成签到,获得积分10
10秒前
10秒前
小安发布了新的文献求助10
10秒前
11秒前
叶未晞yi完成签到,获得积分10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
kilig应助科研通管家采纳,获得10
14秒前
14秒前
华仔应助科研通管家采纳,获得30
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
博ge发布了新的文献求助10
16秒前
17秒前
葶儿发布了新的文献求助10
17秒前
hgcyp完成签到,获得积分10
22秒前
ysh完成签到,获得积分10
22秒前
22秒前
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824