Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer

医学 宫颈癌 磁共振成像 Lasso(编程语言) 放射科 无线电技术 单变量分析 淋巴结 深度学习 逻辑回归 癌症 人工智能 多元分析 内科学 计算机科学 万维网
作者
Haowen Yan,Guoxin Huang,Zhiyuan Yang,Yirong Chen,Zhiming Xiang
标识
DOI:10.1007/s10278-023-00906-w
摘要

Deep stromal invasion is an important pathological factor associated with the treatments and prognosis of cervical cancer patients. Accurate determination of deep stromal invasion before radical hysterectomy (RH) is of great value for early clinical treatment decision-making and improving the prognosis of these patients. Machine learning is gradually applied in the construction of clinical models to improve the accuracy of clinical diagnosis or prediction, but whether machine learning can improve the preoperative diagnosis accuracy of deep stromal invasion in patients with cervical cancer was still unclear. This cross-sectional study was to construct three preoperative diagnostic models for deep stromal invasion in patients with early cervical cancer based on clinical, radiomics, and clinical combined radiomics data using the machine learning method. We enrolled 229 patients with early cervical cancer receiving RH combined with pelvic lymph node dissection (PLND). The least absolute shrinkage and selection operator (LASSO) and the fivefold cross-validation were applied to screen out radiomics features. Univariate and multivariate logistic regression analyses were applied to identify clinical predictors. All subjects were divided into the training set (n = 160) and testing set (n = 69) at a ratio of 7:3. Three light gradient boosting machine (LightGBM) models were constructed in the training set and verified in the testing set. The radiomics features were statistically different between deep stromal invasion < 1/3 group and deep stromal invasion ≥ 1/3 group. In the training set, the area under the curve (AUC) of the prediction model based on radiomics features was 0.951 (95% confidence interval (CI) 0.922-0.980), the AUC of the prediction model based on clinical predictors was 0.769 (95% CI 0.703-0.835), and the AUC of the prediction model based on radiomics features and clinical predictors was 0.969 (95% CI 0.947-0.990). The AUC of the prediction model based on radiomics features and clinical predictors was 0.914 (95% CI 0.848-0.980) in the testing set. The prediction model for deep stromal invasion in patients with early cervical cancer based on clinical and radiomics data exhibited good predictive performance with an AUC of 0.969, which might help the clinicians early identify patients with high risk of deep stromal invasion and provide timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
George完成签到,获得积分10
刚刚
1秒前
梦梦发布了新的文献求助10
1秒前
完美世界应助说话请投币采纳,获得10
1秒前
何白发布了新的文献求助10
2秒前
多多完成签到,获得积分10
2秒前
星辰大海应助wuxunxun2015采纳,获得30
2秒前
晓槐完成签到,获得积分10
2秒前
朱子完成签到,获得积分10
3秒前
七栀完成签到,获得积分10
3秒前
寻悦发布了新的文献求助10
3秒前
fge完成签到,获得积分10
4秒前
浮游应助第七个星球采纳,获得10
4秒前
辰昜完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
爬得飞快的仲文博完成签到,获得积分10
6秒前
7秒前
完美世界应助疯狂的天宇采纳,获得10
7秒前
ALL发布了新的文献求助10
8秒前
8秒前
Maize Man完成签到,获得积分10
8秒前
8秒前
李yu发布了新的文献求助10
8秒前
9秒前
9秒前
憨憨猫发布了新的文献求助10
9秒前
9秒前
10秒前
小青椒应助baobaoxiong采纳,获得30
10秒前
Ymj发布了新的文献求助10
11秒前
zone54188发布了新的文献求助10
11秒前
12秒前
orixero应助xiaofeizhu采纳,获得10
12秒前
细心的逍遥完成签到,获得积分10
13秒前
张怡博发布了新的文献求助10
13秒前
忧虑的慕山完成签到,获得积分10
14秒前
沈彬彬发布了新的文献求助10
14秒前
盛夏蔚来发布了新的文献求助10
14秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983