已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Effective Classification of DDoS Attacks in a Distributed Network by Adopting Hierarchical Machine Learning and Hyperparameters Optimization Techniques

服务拒绝攻击 计算机科学 超参数 机器学习 人工智能 互联网 万维网
作者
Sandeep Dasari,Rajesh Kaluri
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 10834-10845 被引量:15
标识
DOI:10.1109/access.2024.3352281
摘要

Data privacy is essential in the financial sector to protect client's sensitive information, prevent financial fraud, ensure regulatory compliance, and safeguard intellectual property. It has become a challenging task due to the increase in usage of the internet and digital transactions. In this scenario, DDoS attack is one of the major attacks that makes clients' privacy questionable. It requires effective and robust attack detection and prevention techniques. Machine Learning (ML) has the most effective approaches for employing cyber attack detection systems. It paves the way for a new era where human and scientific communities will benefit. This paper presents a hierarchical ML-based hyperparameter-optimization approach for classifying intrusions in a network. CICIDS 2017 standard dataset was considered for this work, Initially, data was preprocessed with the min-max scaling and SMOTE methods. The LASSO approach was used for feature selection, given as input to the hierarchical ML algorithms: XGboost, LGBM, CatBoost, random forest, and decision tree. All these algorithms are pretrained with hyperparameters to enhance the effectiveness of algorithms. Models performance was assessed in terms of recall, precision, accuracy, and F1-score metrics. Evaluated approaches have shown that the LGBM algorithm gives a proven performance in classifying DDoS attacks with 99.77% of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
毛豆应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
3秒前
3秒前
3秒前
hhx完成签到,获得积分10
4秒前
德玛西亚完成签到,获得积分10
5秒前
任凡平完成签到,获得积分10
5秒前
哭泣以筠发布了新的文献求助10
7秒前
张鑫发布了新的文献求助30
7秒前
24画发布了新的文献求助10
7秒前
7秒前
feb发布了新的文献求助30
7秒前
BB鸟发布了新的文献求助10
11秒前
端庄绝山完成签到,获得积分10
12秒前
伶俐的从菡完成签到,获得积分10
14秒前
hezaly完成签到,获得积分10
16秒前
humble完成签到 ,获得积分10
16秒前
田様应助feb采纳,获得10
19秒前
脑洞疼应助端庄绝山采纳,获得10
19秒前
20秒前
20秒前
21秒前
意意发布了新的文献求助10
22秒前
BB鸟完成签到,获得积分10
24秒前
25秒前
默而非问发布了新的文献求助20
25秒前
Yuantian发布了新的文献求助20
26秒前
27秒前
斯文败类应助苑阿宇采纳,获得10
29秒前
30秒前
35秒前
wangting发布了新的文献求助10
36秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463394
求助须知:如何正确求助?哪些是违规求助? 3056785
关于积分的说明 9053976
捐赠科研通 2746681
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696299
邀请新用户注册赠送积分活动 695859