A basket trial design based on constrained hierarchical Bayesian model for latent subgroups

I类和II类错误 贝叶斯概率 样本量测定 计算机科学 贝叶斯定理 计量经济学 统计 数学 人工智能
作者
Kentaro Takeda,Atsuki Hashimoto,Shufang Liu,Alan Rong
出处
期刊:Journal of Biopharmaceutical Statistics [Informa]
卷期号:: 1-12
标识
DOI:10.1080/10543406.2024.2311851
摘要

It is well known a basket trial consisting of multiple cancer types has the potential of borrowing strength across the baskets defined by the cancer types, leading to an efficient design in terms of sample size and trial duration. The treatment effects in those baskets are often heterogeneous and categorized by the cancer types being sensitive or insensitive to the treatment. Hence, the assumption of exchangeability in many existing basket trials may be violated, and there is a need to design trials without this assumption. In this paper, we simplify the constrained hierarchical Bayesian model for latent subgroups (CHBM-LS) for two classifiers to deal with the potential heterogeneity of treatment effects due to the single classifier of the cancer type. Different baskets are aggregated into subgroups using a latent subgroup modeling approach. The treatment effects are similar and exchangeable to facilitate information borrowing within each latent subgroup. Applying the simplified CHBM-LS approach to the real basket trials where baskets defined by only cancer types shows better performance than other available approaches. Further simulation study also demonstrates this CHBM-LS approach outperforms other approaches with higher statistical power and better-controlled type I error rates under various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
huizi发布了新的文献求助10
1秒前
2秒前
菠萝冰棒发布了新的文献求助10
2秒前
2秒前
请叫我风吹麦浪完成签到,获得积分0
2秒前
清爽雪枫发布了新的文献求助10
3秒前
3秒前
3秒前
李健应助斜杠武采纳,获得10
4秒前
fengxj完成签到 ,获得积分10
4秒前
4秒前
4秒前
七七给七七的求助进行了留言
4秒前
5秒前
5秒前
Hello应助冷静的平安采纳,获得10
5秒前
FKVB_完成签到 ,获得积分10
6秒前
饼饼完成签到,获得积分10
6秒前
天天快乐应助木木采纳,获得10
6秒前
艺玲发布了新的文献求助10
6秒前
大气飞丹发布了新的文献求助10
6秒前
丫丫完成签到,获得积分10
7秒前
科研通AI2S应助觅桃乌龙采纳,获得10
7秒前
耿强完成签到,获得积分10
7秒前
wanci应助dd采纳,获得10
8秒前
汉堡包应助cuihl123采纳,获得10
8秒前
李浓完成签到,获得积分10
8秒前
DreamMaker发布了新的文献求助10
8秒前
mao12wang完成签到,获得积分10
9秒前
9秒前
bdvdsrwteges发布了新的文献求助10
10秒前
如约而至发布了新的文献求助20
10秒前
纯真的莫茗完成签到,获得积分10
10秒前
彭于晏应助超11采纳,获得10
11秒前
11秒前
gavincsu发布了新的文献求助10
11秒前
KSGGS给KSGGS的求助进行了留言
11秒前
flow驳回了Aria应助
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759