Cross-Modal Oriented Object Detection of UAV Aerial Images Based on Image Feature

遥感 人工智能 目标检测 计算机视觉 特征(语言学) 计算机科学 航空影像 情态动词 特征提取 图像(数学) 地质学 模式识别(心理学) 语言学 哲学 化学 高分子化学
作者
Huiying Wang,Chunping Wang,Qiang Fu,Dongdong Zhang,Renke Kou,Ying Yu,Jian Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-21
标识
DOI:10.1109/tgrs.2024.3367934
摘要

Arbitrary-oriented object detection is vital for improving UAV sensing and has promising applications. However, challenges persist in detecting objects under extreme conditions like low-illumination and strong occlusion. Cross-modal feature fusion enhances detection in complex environments but current methods do not adequately learn the features of each modality for the current environment, resulting in degraded performance. To tackle this, we propose the CRSIOD network that effectively learns diverse sensor image features to capture distinct scenarios and target characteristics. Firstly, we design an illumination perception module to guide the object detection network in performing various feature processing tasks. Secondly, to leverage the respective advantages of two modalities and mitigate their negative impacts, we introduce an uncertainty aware module to quantify the uncertainties present in each modality as weights to motivate the network to learn in a direction favorable for optimal object detection. Moreover, in the object detection network, we design a two-stream backbone network based on the attention mechanism to enhance the learning of difficult samples, utilize the CMAFF module to fully extract the shared and complementary features between the two modalities, and design a three-branch feature enhancement network to enhance the learning of the three modal features separately. Finally, to optimize detection results, we design light perception non-maximum suppression and improve the horizontal detection head to a rotating one to preserve object orientation. We evaluate the proposed method CRSIOD on the Drone Vehicle dataset of public UAV aerial images. Compared with the existing commonly used methods, CRSIOD achieves state-of-the-art detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十七完成签到 ,获得积分10
1秒前
1秒前
ccerr完成签到,获得积分10
2秒前
2秒前
乌梅不乌完成签到,获得积分10
2秒前
2秒前
和谐的寄凡完成签到,获得积分10
3秒前
Millennial发布了新的文献求助10
4秒前
诸笑白发布了新的文献求助10
4秒前
车秋寒发布了新的文献求助10
4秒前
5秒前
我是老大应助张学友采纳,获得30
8秒前
xiangxiang发布了新的文献求助10
8秒前
8秒前
想在海边种花完成签到,获得积分10
9秒前
无限的雨梅完成签到 ,获得积分10
9秒前
9秒前
材料打工人完成签到 ,获得积分10
10秒前
甜甜忆山完成签到,获得积分10
11秒前
楼剑愁发布了新的文献求助10
11秒前
好难啊发布了新的文献求助10
12秒前
12秒前
苏苏发布了新的文献求助10
15秒前
16秒前
好难啊完成签到,获得积分20
17秒前
悦耳觅荷完成签到,获得积分20
18秒前
阿尔卑斯完成签到,获得积分10
19秒前
浪迹天涯应助kldxxb采纳,获得10
19秒前
zasideler完成签到,获得积分10
20秒前
故意的傲玉应助Anquan采纳,获得10
21秒前
inshialla完成签到 ,获得积分10
22秒前
youjiang发布了新的文献求助10
22秒前
heidi发布了新的文献求助10
22秒前
lxd完成签到,获得积分10
23秒前
23秒前
标致的蛋挞完成签到,获得积分10
23秒前
YanChengHan发布了新的文献求助10
23秒前
大模型应助wyhhh采纳,获得10
24秒前
科研通AI5应助苏苏采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851