Cross-Modal Oriented Object Detection of UAV Aerial Images Based on Image Feature

遥感 人工智能 目标检测 计算机视觉 特征(语言学) 计算机科学 航空影像 情态动词 特征提取 图像(数学) 地质学 模式识别(心理学) 语言学 哲学 化学 高分子化学
作者
Huiying Wang,Chunping Wang,Qiang Fu,Dongdong Zhang,Renke Kou,Ying Yu,Jian Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-21
标识
DOI:10.1109/tgrs.2024.3367934
摘要

Arbitrary-oriented object detection is vital for improving UAV sensing and has promising applications. However, challenges persist in detecting objects under extreme conditions like low-illumination and strong occlusion. Cross-modal feature fusion enhances detection in complex environments but current methods do not adequately learn the features of each modality for the current environment, resulting in degraded performance. To tackle this, we propose the CRSIOD network that effectively learns diverse sensor image features to capture distinct scenarios and target characteristics. Firstly, we design an illumination perception module to guide the object detection network in performing various feature processing tasks. Secondly, to leverage the respective advantages of two modalities and mitigate their negative impacts, we introduce an uncertainty aware module to quantify the uncertainties present in each modality as weights to motivate the network to learn in a direction favorable for optimal object detection. Moreover, in the object detection network, we design a two-stream backbone network based on the attention mechanism to enhance the learning of difficult samples, utilize the CMAFF module to fully extract the shared and complementary features between the two modalities, and design a three-branch feature enhancement network to enhance the learning of the three modal features separately. Finally, to optimize detection results, we design light perception non-maximum suppression and improve the horizontal detection head to a rotating one to preserve object orientation. We evaluate the proposed method CRSIOD on the Drone Vehicle dataset of public UAV aerial images. Compared with the existing commonly used methods, CRSIOD achieves state-of-the-art detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
DYT发布了新的文献求助10
7秒前
hanhanhan发布了新的文献求助10
8秒前
幸福大白发布了新的文献求助10
10秒前
12秒前
apollo3232发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
小熊发布了新的文献求助10
19秒前
liugm发布了新的文献求助10
20秒前
领导范儿应助何筱江采纳,获得10
21秒前
多多发布了新的文献求助10
22秒前
谨慎南露发布了新的文献求助10
22秒前
24秒前
CipherSage应助饱满泥猴桃采纳,获得10
24秒前
小糖完成签到 ,获得积分10
24秒前
chenboz发布了新的文献求助10
24秒前
27秒前
今后应助来一客温暖采纳,获得10
28秒前
谨慎南露完成签到,获得积分20
29秒前
liugm完成签到,获得积分10
29秒前
隐形问萍发布了新的文献求助10
30秒前
31秒前
32秒前
32秒前
啾啾咪咪发布了新的文献求助10
33秒前
科研通AI2S应助JJ采纳,获得10
33秒前
贰鸟应助PPP采纳,获得50
34秒前
多多完成签到,获得积分10
34秒前
幸福大白发布了新的文献求助10
35秒前
丘比特应助科研通管家采纳,获得30
35秒前
今后应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
顾矜应助科研通管家采纳,获得50
36秒前
5cdc应助科研通管家采纳,获得10
36秒前
研友_VZG7GZ应助科研通管家采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954