催化作用
乙烯
化学
锌
无机化学
路易斯酸
对二甲苯
二甲苯
核化学
废物管理
材料科学
有机化学
甲苯
工程类
作者
Yuewen Shao,Linghui Kong,Mengjiao Fan,Kai Sun,Guoming Gao,Chao Li,Lijun Zhang,Shu Zhang,Yi Wang,Xun Hu
标识
DOI:10.1021/acssuschemeng.3c08206
摘要
Poly(ethylene terephthalate) (PET)-derived plastics are an important fraction of plastic waste. Selective hydrogenolysis of PET to p-xylene (xylene) and ethylene glycol (EG) could partially recover its value as a chemical feedstock. Herein, Cu/Zn-FeOx catalysts were prepared for the conversion of PET to xylene and EG in 1,4-dioxane at 180–200 °C. The results showed that Zn in Cu/Zn-FeOx created more Lewis acidic sites and enhanced the dispersion of metallic Cu species by developing a porous structure and promoting the reduction of CuO. Cu2.0/Zn1.0-FeOx was much more active than Cu/FeOx for the conversion of PET to xylene at 180 °C (yield: 93.7% vs 40.7%) but also for further hydrogenolysis of EG, diminishing EG in products. Cu1.0/Zn2.0-FeOx with a lower availability of Cu sites could also achieve a xylene yield of 98.6% and retain more EG (yield: 53.3%). A kinetic study showed that hydrogenolysis of intermediates like p-tolylmethanol but not hydrogenation was the rate-determining step. The lower activation energy for hydrogenolysis over Cu2.0/Zn1.0-FeOx than over Cu/FeOx (57.8 vs 65.8 kJ·mol–1) rendered the higher turnover frequency for xylene formation. In situ IR characterization showed that Lewis acidic sites induced by Zn addition were important for the adsorption/activation of O-containing functionalities (i.e., C–OH) of the reaction intermediates and consequently further hydrogenolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI