The efficacy and methodology of using near-infrared spectroscopy to determine resting-state brain networks

静息状态功能磁共振成像 功能磁共振成像 功能近红外光谱 大脑活动与冥想 神经科学 任务(项目管理) 脑功能 心理学 功能连接 人工智能 计算机科学 认知 脑电图 前额叶皮质 经济 管理
作者
Christian Notte,Caroline Alionte,Christos D. Strubakos
出处
期刊:Journal of Neurophysiology [American Physiological Society]
卷期号:131 (4): 668-677 被引量:2
标识
DOI:10.1152/jn.00357.2023
摘要

Functional connectivity is a critical aspect of brain function and is essential for understanding, diagnosing, and treating neurological and psychiatric disorders. It refers to the synchronous activity between different regions of the brain, which gives rise to communication and information processing. Resting-state functional connectivity is a subarea of study that allows researchers to examine brain activity in the absence of a task or stimulus. This can provide insight into the brain's intrinsic functional architecture and help identify neural networks that are active during rest. Thus, determining functional connectivity topography is valuable both clinically and in research. Traditional methods using functional magnetic resonance imaging have proven to be effective, however, they have their limitations. In this review, we investigate the feasibility of using functional near-infrared spectroscopy (fNIRS) as a low-cost, portable alternative for measuring functional connectivity. We first establish fNIRS' ability to detect localized brain activity during task-based experiments. Next, we verify its use in resting-state studies with results showing a high degree of correspondence with resting-state functional magnetic resonance imaging (rs-fMRI). Also discussed are various data-processing methods and the validity of filtering the global signal, which is the current standard for analysis. We consider the possible origins of the global signal, if it contains pertinent neuronal information that could be of importance in better understanding neuronal networks, and what we believe is the best method of approaching signal analysis and regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
浮浮世世发布了新的文献求助10
1秒前
温暖的白猫完成签到,获得积分10
1秒前
刘明生发布了新的文献求助10
2秒前
2秒前
user_huang发布了新的文献求助10
2秒前
无名完成签到,获得积分10
2秒前
wlx发布了新的文献求助10
3秒前
赘婿应助LuoJiajun采纳,获得10
3秒前
wanna发布了新的文献求助10
3秒前
阿玖完成签到 ,获得积分20
3秒前
倪妮完成签到,获得积分10
3秒前
3秒前
大个应助Cc采纳,获得10
3秒前
完美世界应助张秉环采纳,获得10
4秒前
5秒前
后撤步7777发布了新的文献求助10
5秒前
5秒前
5秒前
思源应助浮浮世世采纳,获得10
6秒前
朱奕韬发布了新的文献求助10
6秒前
qy完成签到,获得积分10
6秒前
风吹麦田应助jason采纳,获得100
6秒前
wanci应助Alys采纳,获得10
6秒前
7秒前
7秒前
善学以致用应助LNF采纳,获得10
8秒前
hao发布了新的文献求助10
8秒前
user_huang完成签到,获得积分10
8秒前
pei完成签到,获得积分10
8秒前
Daybreak发布了新的文献求助10
8秒前
wanci应助机灵代云采纳,获得10
8秒前
张姣姣发布了新的文献求助10
8秒前
mimi完成签到,获得积分10
9秒前
10秒前
梁寒完成签到,获得积分10
10秒前
天空完成签到,获得积分20
10秒前
研友_VZG7GZ应助Evaporate采纳,获得10
10秒前
完美世界应助玩命的新波采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512510
求助须知:如何正确求助?哪些是违规求助? 4606940
关于积分的说明 14501746
捐赠科研通 4542246
什么是DOI,文献DOI怎么找? 2488959
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152