Improving Text-Based Person Retrieval by Excavating All-Round Information Beyond Color

人工智能 情报检索 计算机科学 自然语言处理 万维网
作者
Aichun Zhu,Zijie Wang,Jingyi Xue,Xili Wan,Jing Jin,Tian Wang,Hichem Snoussi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3368217
摘要

Text-based person retrieval is the process of searching a massive visual resource library for images of a particular pedestrian, based on a textual query. Existing approaches often suffer from a problem of color (CLR) over-reliance , which can result in a suboptimal person retrieval performance by distracting the model from other important visual cues such as texture and structure information. To handle this problem, we propose a novel framework to E xcavate A ll-round I nformation B eyond C olor for the task of text-based person retrieval, which is therefore termed EAIBC. The EAIBC architecture includes four branches, namely an RGB branch, a grayscale (GRS) branch, a high-frequency (HFQ) branch, and a CLR branch. Furthermore, we introduce a mutual learning (ML) mechanism to facilitate communication and learning among the branches, enabling them to take full advantage of all-round information in an effective and balanced manner. We evaluate the proposed method on three benchmark datasets, including CUHK-PEDES, ICFG-PEDES, and RSTPReid. The experimental results demonstrate that EAIBC significantly outperforms existing methods and achieves state-of-the-art (SOTA) performance in supervised, weakly supervised, and cross-domain settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
马静雨完成签到,获得积分20
1秒前
2秒前
2秒前
快乐小白菜应助shenzhou9采纳,获得10
2秒前
无花果应助aertom采纳,获得10
2秒前
小田发布了新的文献求助10
2秒前
sankumao发布了新的文献求助30
2秒前
奋斗的盼柳完成签到 ,获得积分10
3秒前
4秒前
Jasper应助handsomecat采纳,获得10
4秒前
4秒前
李雪完成签到,获得积分10
5秒前
5秒前
sv发布了新的文献求助10
7秒前
小田完成签到,获得积分10
7秒前
茶茶完成签到,获得积分20
7秒前
苏兴龙完成签到,获得积分10
7秒前
坚强的亦云-333完成签到,获得积分10
7秒前
Ava应助dan1029采纳,获得10
8秒前
8秒前
8秒前
奶糖最可爱完成签到,获得积分10
9秒前
9秒前
mojomars发布了新的文献求助10
10秒前
幽壑之潜蛟应助茶茶采纳,获得10
10秒前
11秒前
11秒前
11秒前
迅速海云完成签到,获得积分10
11秒前
sjxx发布了新的文献求助10
11秒前
11秒前
乐乐应助Rachel采纳,获得10
12秒前
12秒前
12秒前
天天快乐应助孤独的珩采纳,获得10
13秒前
帅气鹭洋发布了新的文献求助20
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794