Rapid and high accurate identification of Escherichia coli active and inactivated state by hyperspectral microscope imaging combing with machine learning algorithm

高光谱成像 人工智能 主成分分析 支持向量机 预处理器 计算机科学 算法 感兴趣区域 模式识别(心理学) 平滑的 生物系统 计算机视觉 生物
作者
Chenlu Wu,Yanqing Xie,Qiang Xi,Xiangli Han,Zheng Li,Gang Li,Jing Zhao,Ming Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:130: 103645-103645
标识
DOI:10.1016/j.vibspec.2023.103645
摘要

Rapid identification of the active state of foodborne bacteria is crucial for ensuring the safety and quality control of food or pharmaceutical products. In this study, a combination of hyperspectral microscope imaging (HMI) and machine learning algorithm is employed for the identification of active state of Escherichia coli (E. coli). Hyperspectral microscope images of live, 100 ℃ heat inactivation and 121 ℃ high-pressure inactivation of E. coli are collected in wavelength range of 370–1060 nm. Savitzky-Golay (SG) smoothing combing with normalization is used for spectra preprocessing. And principal component analysis (PCA) is employed for spectral dimension reduction. Four different regions of interest (ROIs), including the entire bacterial cell ROI (cell), the outer cell wall ROI (cell_r), the membrane structure ROI (cell_w) formed by the cell wall and cell membrane, and the central of the cell ROI (cell_cy), are extracted and used as model input variables to investigate the influence on the modeling results. Five model algorithms, support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN) algorithms, discriminant analysis (DA) classifiers, and long short-term memory (LSTM) neural networks are used and compared. Modeling results with spectral data of cell_r perform better than those with other ROIs. Accuracy of the models with data of the cell_r ROI are as follows: 79.78% for SVM, 95.11% for RF, 91.33% for KNN, 98.22% for DA, and 93.78% for LSTM. DA achieves the highest classification accuracy. The results show that high-temperature inactivation induces changes in bacterial tissue and morphology, resulting in certain spectral differences among bacteria in three different states. The combination of hyperspectral microscope imaging and machine learning algorithm can provide an effective method for identification of active and inactive states of E. coli. Furthermore, the model, constructed with the data of cell_r ROI, exhibits the best performance in identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验室同学完成签到,获得积分10
1秒前
大橙子发布了新的文献求助10
3秒前
zx完成签到,获得积分10
3秒前
ZC发布了新的文献求助10
5秒前
万能图书馆应助猹尔斯采纳,获得10
5秒前
6秒前
科研通AI2S应助孙小雨采纳,获得10
6秒前
Jasper应助孙小雨采纳,获得10
6秒前
毛毛发布了新的文献求助20
6秒前
红领巾klj完成签到 ,获得积分10
7秒前
9秒前
今后应助无私的问芙采纳,获得10
10秒前
cctv18应助ChenYX采纳,获得30
11秒前
大橙子完成签到,获得积分10
11秒前
杰瑞发布了新的文献求助10
11秒前
怕黑的小蘑菇完成签到,获得积分20
13秒前
14秒前
zhao完成签到,获得积分20
14秒前
14秒前
14秒前
脑洞疼应助chenxi采纳,获得10
15秒前
善学以致用应助surong采纳,获得10
16秒前
17秒前
17秒前
陈法国发布了新的文献求助10
18秒前
兔斯基完成签到 ,获得积分10
18秒前
mzl发布了新的文献求助10
20秒前
20秒前
1257应助zhao采纳,获得20
20秒前
lemonlmm应助查文献的小橙采纳,获得30
21秒前
英姑应助刘大强采纳,获得10
23秒前
wanci应助陈法国采纳,获得10
24秒前
24秒前
小马甲应助Paddi采纳,获得10
24秒前
24秒前
我是老大应助Mr采纳,获得10
24秒前
24秒前
懒羊羊完成签到 ,获得积分10
25秒前
CHANG发布了新的文献求助10
25秒前
大方月亮完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194