Rapid and high accurate identification of Escherichia coli active and inactivated state by hyperspectral microscope imaging combing with machine learning algorithm

高光谱成像 人工智能 主成分分析 支持向量机 预处理器 计算机科学 算法 感兴趣区域 模式识别(心理学) 平滑的 生物系统 计算机视觉 生物
作者
Chenlu Wu,Yanqing Xie,Qiang Xi,Xiangli Han,Zheng Li,Gang Li,Jing Zhao,Ming Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:130: 103645-103645 被引量:2
标识
DOI:10.1016/j.vibspec.2023.103645
摘要

Rapid identification of the active state of foodborne bacteria is crucial for ensuring the safety and quality control of food or pharmaceutical products. In this study, a combination of hyperspectral microscope imaging (HMI) and machine learning algorithm is employed for the identification of active state of Escherichia coli (E. coli). Hyperspectral microscope images of live, 100 ℃ heat inactivation and 121 ℃ high-pressure inactivation of E. coli are collected in wavelength range of 370–1060 nm. Savitzky-Golay (SG) smoothing combing with normalization is used for spectra preprocessing. And principal component analysis (PCA) is employed for spectral dimension reduction. Four different regions of interest (ROIs), including the entire bacterial cell ROI (cell), the outer cell wall ROI (cell_r), the membrane structure ROI (cell_w) formed by the cell wall and cell membrane, and the central of the cell ROI (cell_cy), are extracted and used as model input variables to investigate the influence on the modeling results. Five model algorithms, support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN) algorithms, discriminant analysis (DA) classifiers, and long short-term memory (LSTM) neural networks are used and compared. Modeling results with spectral data of cell_r perform better than those with other ROIs. Accuracy of the models with data of the cell_r ROI are as follows: 79.78% for SVM, 95.11% for RF, 91.33% for KNN, 98.22% for DA, and 93.78% for LSTM. DA achieves the highest classification accuracy. The results show that high-temperature inactivation induces changes in bacterial tissue and morphology, resulting in certain spectral differences among bacteria in three different states. The combination of hyperspectral microscope imaging and machine learning algorithm can provide an effective method for identification of active and inactive states of E. coli. Furthermore, the model, constructed with the data of cell_r ROI, exhibits the best performance in identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡依霜发布了新的文献求助10
1秒前
今后应助果子黄采纳,获得10
2秒前
3秒前
4秒前
PIngguo完成签到,获得积分10
4秒前
小巧向秋发布了新的文献求助30
4秒前
三模蕾缪安完成签到,获得积分10
5秒前
orixero应助小透明采纳,获得150
5秒前
6秒前
6秒前
PiNle完成签到,获得积分10
7秒前
7秒前
淡定的幻枫完成签到 ,获得积分10
8秒前
小巧向秋发布了新的文献求助30
9秒前
9秒前
richie1988完成签到,获得积分10
9秒前
ding应助英勇初南采纳,获得10
10秒前
小巧向秋发布了新的文献求助30
10秒前
小巧向秋发布了新的文献求助10
10秒前
科研通AI2S应助孙皓阳采纳,获得10
11秒前
合适忆枫发布了新的文献求助10
11秒前
思源应助西蜀小吏采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
family发布了新的文献求助10
11秒前
Suo发布了新的社区帖子
12秒前
13秒前
13秒前
爆米花应助RZ采纳,获得50
14秒前
14秒前
14秒前
Orange应助马巧巧采纳,获得10
14秒前
15秒前
蔚然然完成签到,获得积分10
17秒前
庄冬丽发布了新的文献求助10
18秒前
richie1988发布了新的文献求助10
18秒前
小七发布了新的文献求助10
20秒前
20秒前
168关注了科研通微信公众号
20秒前
黄志铖发布了新的文献求助10
20秒前
dd发布了新的文献求助10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620743
求助须知:如何正确求助?哪些是违规求助? 4705287
关于积分的说明 14931303
捐赠科研通 4762860
什么是DOI,文献DOI怎么找? 2551173
邀请新用户注册赠送积分活动 1513769
关于科研通互助平台的介绍 1474655