Rapid and high accurate identification of Escherichia coli active and inactivated state by hyperspectral microscope imaging combing with machine learning algorithm

高光谱成像 人工智能 主成分分析 支持向量机 预处理器 计算机科学 算法 感兴趣区域 模式识别(心理学) 平滑的 生物系统 计算机视觉 生物
作者
Chenlu Wu,Yanqing Xie,Qiang Xi,Xiangli Han,Zheng Li,Gang Li,Jing Zhao,Ming Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:130: 103645-103645 被引量:2
标识
DOI:10.1016/j.vibspec.2023.103645
摘要

Rapid identification of the active state of foodborne bacteria is crucial for ensuring the safety and quality control of food or pharmaceutical products. In this study, a combination of hyperspectral microscope imaging (HMI) and machine learning algorithm is employed for the identification of active state of Escherichia coli (E. coli). Hyperspectral microscope images of live, 100 ℃ heat inactivation and 121 ℃ high-pressure inactivation of E. coli are collected in wavelength range of 370–1060 nm. Savitzky-Golay (SG) smoothing combing with normalization is used for spectra preprocessing. And principal component analysis (PCA) is employed for spectral dimension reduction. Four different regions of interest (ROIs), including the entire bacterial cell ROI (cell), the outer cell wall ROI (cell_r), the membrane structure ROI (cell_w) formed by the cell wall and cell membrane, and the central of the cell ROI (cell_cy), are extracted and used as model input variables to investigate the influence on the modeling results. Five model algorithms, support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN) algorithms, discriminant analysis (DA) classifiers, and long short-term memory (LSTM) neural networks are used and compared. Modeling results with spectral data of cell_r perform better than those with other ROIs. Accuracy of the models with data of the cell_r ROI are as follows: 79.78% for SVM, 95.11% for RF, 91.33% for KNN, 98.22% for DA, and 93.78% for LSTM. DA achieves the highest classification accuracy. The results show that high-temperature inactivation induces changes in bacterial tissue and morphology, resulting in certain spectral differences among bacteria in three different states. The combination of hyperspectral microscope imaging and machine learning algorithm can provide an effective method for identification of active and inactive states of E. coli. Furthermore, the model, constructed with the data of cell_r ROI, exhibits the best performance in identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助高永康采纳,获得10
刚刚
希望天下0贩的0应助E10100采纳,获得10
刚刚
猫吃蘑菇完成签到,获得积分10
刚刚
mcxkjnv完成签到,获得积分10
刚刚
CipherSage应助冷艳水壶采纳,获得10
1秒前
2秒前
woshigantang发布了新的文献求助10
2秒前
甜豆包完成签到 ,获得积分10
3秒前
3秒前
婉孝完成签到,获得积分10
4秒前
栀恩关注了科研通微信公众号
4秒前
科目三应助冷艳水壶采纳,获得10
5秒前
hff完成签到,获得积分20
6秒前
热情友桃发布了新的文献求助10
6秒前
醉山茶发布了新的文献求助10
6秒前
6秒前
紫色茄子发布了新的文献求助10
6秒前
7秒前
an完成签到,获得积分20
7秒前
domkps发布了新的文献求助10
7秒前
cheong完成签到,获得积分10
8秒前
ewww完成签到 ,获得积分10
8秒前
8秒前
浮游应助luoshikun采纳,获得10
9秒前
猪猪hero发布了新的文献求助10
10秒前
喵誉玉完成签到 ,获得积分10
11秒前
12秒前
fjh发布了新的文献求助10
12秒前
lhhhhh完成签到,获得积分10
13秒前
13秒前
untilyou完成签到,获得积分10
15秒前
15秒前
lixu完成签到,获得积分20
15秒前
内向绮琴完成签到,获得积分10
15秒前
李健的小迷弟应助xyrt采纳,获得30
16秒前
17秒前
欣慰雪巧发布了新的文献求助10
18秒前
感谢完成签到,获得积分20
18秒前
科研通AI2S应助星辰亦会累采纳,获得10
19秒前
CC完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492