Rapid and high accurate identification of Escherichia coli active and inactivated state by hyperspectral microscope imaging combing with machine learning algorithm

高光谱成像 人工智能 主成分分析 支持向量机 预处理器 计算机科学 算法 感兴趣区域 模式识别(心理学) 平滑的 生物系统 计算机视觉 生物
作者
Chenlu Wu,Yanqing Xie,Qiang Xi,Xiangli Han,Zheng Li,Gang Li,Jing Zhao,Ming Liu
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:130: 103645-103645 被引量:2
标识
DOI:10.1016/j.vibspec.2023.103645
摘要

Rapid identification of the active state of foodborne bacteria is crucial for ensuring the safety and quality control of food or pharmaceutical products. In this study, a combination of hyperspectral microscope imaging (HMI) and machine learning algorithm is employed for the identification of active state of Escherichia coli (E. coli). Hyperspectral microscope images of live, 100 ℃ heat inactivation and 121 ℃ high-pressure inactivation of E. coli are collected in wavelength range of 370–1060 nm. Savitzky-Golay (SG) smoothing combing with normalization is used for spectra preprocessing. And principal component analysis (PCA) is employed for spectral dimension reduction. Four different regions of interest (ROIs), including the entire bacterial cell ROI (cell), the outer cell wall ROI (cell_r), the membrane structure ROI (cell_w) formed by the cell wall and cell membrane, and the central of the cell ROI (cell_cy), are extracted and used as model input variables to investigate the influence on the modeling results. Five model algorithms, support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN) algorithms, discriminant analysis (DA) classifiers, and long short-term memory (LSTM) neural networks are used and compared. Modeling results with spectral data of cell_r perform better than those with other ROIs. Accuracy of the models with data of the cell_r ROI are as follows: 79.78% for SVM, 95.11% for RF, 91.33% for KNN, 98.22% for DA, and 93.78% for LSTM. DA achieves the highest classification accuracy. The results show that high-temperature inactivation induces changes in bacterial tissue and morphology, resulting in certain spectral differences among bacteria in three different states. The combination of hyperspectral microscope imaging and machine learning algorithm can provide an effective method for identification of active and inactive states of E. coli. Furthermore, the model, constructed with the data of cell_r ROI, exhibits the best performance in identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Orgcao完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
大道希言发布了新的文献求助10
3秒前
愤怒的山兰完成签到,获得积分10
4秒前
Jonathan完成签到,获得积分10
4秒前
三土有兀完成签到,获得积分10
6秒前
负责半蕾发布了新的文献求助10
6秒前
zzx发布了新的文献求助10
6秒前
小萝卜123发布了新的文献求助10
7秒前
不安晓绿完成签到,获得积分20
7秒前
爱笑乞发布了新的文献求助10
7秒前
卜汁道完成签到,获得积分10
8秒前
嘻嘻哈哈应助研友_Good Hope采纳,获得10
8秒前
9秒前
9秒前
Orange应助jerry采纳,获得10
10秒前
ZhouTY发布了新的文献求助10
10秒前
研友_VZG7GZ应助王洋采纳,获得10
10秒前
10秒前
woseaco发布了新的文献求助30
11秒前
Aaaaa发布了新的文献求助10
11秒前
大菊完成签到,获得积分10
11秒前
11秒前
wanci应助lushuang采纳,获得10
12秒前
有一个盆完成签到,获得积分10
13秒前
闲来逛逛007完成签到 ,获得积分10
13秒前
13秒前
13秒前
bkagyin应助ycliu采纳,获得10
13秒前
13秒前
江小鱼在查文献完成签到,获得积分10
14秒前
Srishti完成签到,获得积分10
14秒前
taotao发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960295
求助须知:如何正确求助?哪些是违规求助? 4220812
关于积分的说明 13144476
捐赠科研通 4004657
什么是DOI,文献DOI怎么找? 2191579
邀请新用户注册赠送积分活动 1205760
关于科研通互助平台的介绍 1116920