Rapid and high accurate identification of Escherichia coli active and inactivated state by hyperspectral microscope imaging combing with machine learning algorithm

高光谱成像 人工智能 主成分分析 支持向量机 预处理器 计算机科学 算法 感兴趣区域 模式识别(心理学) 平滑的 生物系统 计算机视觉 生物
作者
Chenlu Wu,Yanqing Xie,Qiang Xi,Xiangli Han,Zheng Li,Gang Li,Jing Zhao,Ming Liu
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:130: 103645-103645
标识
DOI:10.1016/j.vibspec.2023.103645
摘要

Rapid identification of the active state of foodborne bacteria is crucial for ensuring the safety and quality control of food or pharmaceutical products. In this study, a combination of hyperspectral microscope imaging (HMI) and machine learning algorithm is employed for the identification of active state of Escherichia coli (E. coli). Hyperspectral microscope images of live, 100 ℃ heat inactivation and 121 ℃ high-pressure inactivation of E. coli are collected in wavelength range of 370–1060 nm. Savitzky-Golay (SG) smoothing combing with normalization is used for spectra preprocessing. And principal component analysis (PCA) is employed for spectral dimension reduction. Four different regions of interest (ROIs), including the entire bacterial cell ROI (cell), the outer cell wall ROI (cell_r), the membrane structure ROI (cell_w) formed by the cell wall and cell membrane, and the central of the cell ROI (cell_cy), are extracted and used as model input variables to investigate the influence on the modeling results. Five model algorithms, support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN) algorithms, discriminant analysis (DA) classifiers, and long short-term memory (LSTM) neural networks are used and compared. Modeling results with spectral data of cell_r perform better than those with other ROIs. Accuracy of the models with data of the cell_r ROI are as follows: 79.78% for SVM, 95.11% for RF, 91.33% for KNN, 98.22% for DA, and 93.78% for LSTM. DA achieves the highest classification accuracy. The results show that high-temperature inactivation induces changes in bacterial tissue and morphology, resulting in certain spectral differences among bacteria in three different states. The combination of hyperspectral microscope imaging and machine learning algorithm can provide an effective method for identification of active and inactive states of E. coli. Furthermore, the model, constructed with the data of cell_r ROI, exhibits the best performance in identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强幼晴发布了新的文献求助10
刚刚
ngyl发布了新的文献求助10
刚刚
稀有人类发布了新的文献求助10
刚刚
1秒前
源源发布了新的文献求助10
1秒前
勤劳思卉完成签到,获得积分10
2秒前
零花钱发布了新的文献求助10
2秒前
金属玻璃兰兰完成签到,获得积分10
3秒前
3秒前
小二郎应助QDMENG采纳,获得10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
BaiX发布了新的文献求助10
4秒前
zhangling发布了新的文献求助10
4秒前
由富发布了新的文献求助10
4秒前
上官若男应助smh采纳,获得10
5秒前
CodeCraft应助坚强幼晴采纳,获得10
5秒前
嗯哼完成签到,获得积分10
5秒前
闪闪的以山完成签到 ,获得积分10
6秒前
今后应助找文献的天才狗采纳,获得10
6秒前
苏楠发布了新的文献求助10
6秒前
taoze完成签到,获得积分10
7秒前
7秒前
甜甜玫瑰应助0000采纳,获得10
8秒前
8秒前
8秒前
爆闪小鸡爪完成签到 ,获得积分10
9秒前
10秒前
覆辙发布了新的文献求助10
10秒前
博士小学生应助陌路孤星采纳,获得10
10秒前
源源完成签到,获得积分10
11秒前
科研通AI2S应助BaiX采纳,获得10
11秒前
CodeCraft应助zhangling采纳,获得10
11秒前
12秒前
zhanglin发布了新的文献求助30
12秒前
12秒前
粉蒸排骨发布了新的文献求助30
12秒前
科目三应助汪姝采纳,获得10
13秒前
腼腆的耷完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053