Rapid and high accurate identification of Escherichia coli active and inactivated state by hyperspectral microscope imaging combing with machine learning algorithm

高光谱成像 人工智能 主成分分析 支持向量机 预处理器 计算机科学 算法 感兴趣区域 模式识别(心理学) 平滑的 生物系统 计算机视觉 生物
作者
Chenlu Wu,Yanqing Xie,Qiang Xi,Xiangli Han,Zheng Li,Gang Li,Jing Zhao,Ming Liu
出处
期刊:Vibrational Spectroscopy [Elsevier BV]
卷期号:130: 103645-103645 被引量:2
标识
DOI:10.1016/j.vibspec.2023.103645
摘要

Rapid identification of the active state of foodborne bacteria is crucial for ensuring the safety and quality control of food or pharmaceutical products. In this study, a combination of hyperspectral microscope imaging (HMI) and machine learning algorithm is employed for the identification of active state of Escherichia coli (E. coli). Hyperspectral microscope images of live, 100 ℃ heat inactivation and 121 ℃ high-pressure inactivation of E. coli are collected in wavelength range of 370–1060 nm. Savitzky-Golay (SG) smoothing combing with normalization is used for spectra preprocessing. And principal component analysis (PCA) is employed for spectral dimension reduction. Four different regions of interest (ROIs), including the entire bacterial cell ROI (cell), the outer cell wall ROI (cell_r), the membrane structure ROI (cell_w) formed by the cell wall and cell membrane, and the central of the cell ROI (cell_cy), are extracted and used as model input variables to investigate the influence on the modeling results. Five model algorithms, support vector machines (SVM), random forests (RF), k-nearest neighbors (KNN) algorithms, discriminant analysis (DA) classifiers, and long short-term memory (LSTM) neural networks are used and compared. Modeling results with spectral data of cell_r perform better than those with other ROIs. Accuracy of the models with data of the cell_r ROI are as follows: 79.78% for SVM, 95.11% for RF, 91.33% for KNN, 98.22% for DA, and 93.78% for LSTM. DA achieves the highest classification accuracy. The results show that high-temperature inactivation induces changes in bacterial tissue and morphology, resulting in certain spectral differences among bacteria in three different states. The combination of hyperspectral microscope imaging and machine learning algorithm can provide an effective method for identification of active and inactive states of E. coli. Furthermore, the model, constructed with the data of cell_r ROI, exhibits the best performance in identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
NTHU_KAO发布了新的文献求助10
1秒前
1秒前
2秒前
Sia完成签到,获得积分10
2秒前
2秒前
杨痒挠完成签到,获得积分10
2秒前
Mininine发布了新的文献求助10
2秒前
柠檬味电子对儿完成签到,获得积分10
2秒前
顾矜应助MasterE采纳,获得10
2秒前
思源应助秋水采纳,获得10
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
4秒前
4秒前
carat完成签到,获得积分10
5秒前
共享精神应助Anaero采纳,获得10
6秒前
小宝完成签到,获得积分10
6秒前
詹雪晴发布了新的文献求助10
6秒前
怡然的飞风完成签到,获得积分20
6秒前
King16发布了新的文献求助10
6秒前
7秒前
CipherSage应助等待的士晋采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
缓慢荔枝完成签到,获得积分10
8秒前
8秒前
贤惠的蓝天完成签到,获得积分10
8秒前
秋水完成签到,获得积分10
8秒前
二十二发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助Guo5082采纳,获得10
10秒前
Adon完成签到,获得积分10
10秒前
江月渡完成签到,获得积分10
10秒前
害羞迎南发布了新的文献求助500
10秒前
今后应助满意的初南采纳,获得10
10秒前
所所应助皮卡皮卡采纳,获得10
10秒前
yuko给yuko的求助进行了留言
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《模拟电子技术基础:系统方法》 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011633
求助须知:如何正确求助?哪些是违规求助? 3551418
关于积分的说明 11308628
捐赠科研通 3285620
什么是DOI,文献DOI怎么找? 1811122
邀请新用户注册赠送积分活动 886781
科研通“疑难数据库(出版商)”最低求助积分说明 811653