亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Prediction of Remaining Useful Life for Rolling Bearings Based on Envelope Spectral Indicator and Bayesian Filter

停工期 方位(导航) 预言 预测性维护 扩展卡尔曼滤波器 包络线(雷达) 颗粒过滤器 转子(电动) 控制理论(社会学) 计算机科学 断层(地质) 可靠性(半导体) 滚动轴承 卡尔曼滤波器 工程类 可靠性工程 振动 人工智能 雷达 机械工程 电信 功率(物理) 物理 控制(管理) 量子力学 地震学 地质学
作者
Haobin Wen,Long Zhang,Jyoti Sinha
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (1): 436-436
标识
DOI:10.3390/app14010436
摘要

On top of the condition-based maintenance (CBM) practice for rotating machinery, the robust estimation of remaining useful life (RUL) for rolling-element bearings (REB) is of particular interest. The failure of a single bearing often results in secondary defects in the connected structure and catastrophic system failures. The prediction of RUL facilitates proactive maintenance planning to ensure system reliability and minimize financial loss due to unscheduled downtime. In this paper, to acquire early and reliable estimations of useful life, the RUL prediction of REBs is formulated into nonlinear degradation state estimation tackled by the combination of the envelope spectral indicator (ESI) and extended Kalman filter (EKF). By fusing the spectral energy of the bearing fault characteristic frequencies (FCFs) in the averaged envelope spectrum, the ESI is crafted to remove the interference from rotor-dynamics and reveal the bearing deterioration process. Once the fault is identified, the recursive Bayesian method based on EKF is utilized for estimating the bearing end-of-life time via the exponential state-space model. The distinctive advantage of the proposed approach lies in its ability to make an early prediction of RUL using a small number of ESI observations, offering an efficient practice for predictive health management at the early stage of bearing fault. The performance of the proposed method is validated using publicly available experimental bearing vibration data across three different operating conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘑菇发布了新的文献求助10
3秒前
6秒前
科研通AI6.1应助牛油果采纳,获得10
6秒前
深情的楷瑞完成签到 ,获得积分10
7秒前
凌时爱吃零食完成签到,获得积分10
9秒前
橙汁完成签到,获得积分10
10秒前
Yu发布了新的文献求助10
13秒前
橙汁发布了新的文献求助10
16秒前
LiW完成签到,获得积分10
18秒前
希望天下0贩的0应助Yu采纳,获得10
18秒前
19秒前
20秒前
21秒前
强劲完成签到 ,获得积分20
23秒前
23秒前
小绵羊发布了新的文献求助10
24秒前
LiW发布了新的文献求助10
26秒前
xiangling1116发布了新的文献求助10
26秒前
29秒前
泡泡完成签到 ,获得积分10
30秒前
兆兆完成签到 ,获得积分10
34秒前
hahaha完成签到,获得积分10
35秒前
xiangling1116完成签到,获得积分10
35秒前
牛油果发布了新的文献求助10
37秒前
43秒前
科研通AI6.1应助gyy采纳,获得10
47秒前
keyanxinshou完成签到 ,获得积分10
49秒前
热心翠霜发布了新的文献求助10
49秒前
49秒前
54秒前
57秒前
善学以致用应助ANTianxu采纳,获得10
57秒前
星辰大海应助我怕好时光采纳,获得10
59秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
我怕好时光完成签到,获得积分10
1分钟前
ANTianxu发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763702
求助须知:如何正确求助?哪些是违规求助? 5543398
关于积分的说明 15405256
捐赠科研通 4899315
什么是DOI,文献DOI怎么找? 2635474
邀请新用户注册赠送积分活动 1583579
关于科研通互助平台的介绍 1538685