Early Prediction of Remaining Useful Life for Rolling Bearings Based on Envelope Spectral Indicator and Bayesian Filter

停工期 方位(导航) 预言 预测性维护 扩展卡尔曼滤波器 包络线(雷达) 颗粒过滤器 转子(电动) 控制理论(社会学) 计算机科学 断层(地质) 可靠性(半导体) 滚动轴承 卡尔曼滤波器 工程类 可靠性工程 振动 人工智能 雷达 机械工程 电信 功率(物理) 物理 控制(管理) 量子力学 地震学 地质学
作者
Haobin Wen,Long Zhang,Jyoti Sinha
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (1): 436-436
标识
DOI:10.3390/app14010436
摘要

On top of the condition-based maintenance (CBM) practice for rotating machinery, the robust estimation of remaining useful life (RUL) for rolling-element bearings (REB) is of particular interest. The failure of a single bearing often results in secondary defects in the connected structure and catastrophic system failures. The prediction of RUL facilitates proactive maintenance planning to ensure system reliability and minimize financial loss due to unscheduled downtime. In this paper, to acquire early and reliable estimations of useful life, the RUL prediction of REBs is formulated into nonlinear degradation state estimation tackled by the combination of the envelope spectral indicator (ESI) and extended Kalman filter (EKF). By fusing the spectral energy of the bearing fault characteristic frequencies (FCFs) in the averaged envelope spectrum, the ESI is crafted to remove the interference from rotor-dynamics and reveal the bearing deterioration process. Once the fault is identified, the recursive Bayesian method based on EKF is utilized for estimating the bearing end-of-life time via the exponential state-space model. The distinctive advantage of the proposed approach lies in its ability to make an early prediction of RUL using a small number of ESI observations, offering an efficient practice for predictive health management at the early stage of bearing fault. The performance of the proposed method is validated using publicly available experimental bearing vibration data across three different operating conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王迪迪完成签到,获得积分10
刚刚
1秒前
勤劳沛柔发布了新的文献求助10
1秒前
zz完成签到,获得积分10
1秒前
那咋了发布了新的文献求助10
1秒前
1秒前
1秒前
bkagyin应助phil采纳,获得10
2秒前
乐乐应助大帅采纳,获得50
2秒前
Manuscript发布了新的文献求助10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
王迪迪发布了新的文献求助10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
充电宝应助洪星采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得30
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
slim完成签到 ,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
实验室应助科研通管家采纳,获得30
3秒前
keyan应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Orange应助糟糕的绮露采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848