Sensing-Based Feature Engineering and Asynchronous OFDM Blind Modulation Classification Using SMOTE-DNN

正交频分复用 计算机科学 异步通信 相移键控 软件无线电 正交调幅 调制(音乐) 认知无线电 卡姆 电子工程 人工智能 模式识别(心理学) 频道(广播) 电信 误码率 工程类 无线 哲学 美学
作者
Yuxiao Yang,Junkai Yang,Xu Chang,Xiaobo Shen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 22117-22128
标识
DOI:10.1109/jsen.2023.3346896
摘要

Blind modulation classification (BMC) is a key technology for communication perception intelligence, cognitive radio and electronic countermeasures. With the wide applications of orthogonal frequency division multiplexing (OFDM) technology in 5G communication and UAV communication, the BMC of OFDM signals is of great significance. The existing modulation classification methods of OFDM signals mainly focus on incomplete blind classification, and the receiver still needs to obtain some prior information. The BMC of asynchronous OFDM signals with completely unknown signal parameters and channel information still has some technical challenges. This paper proposes a blind classification method for asynchronous OFDM signals and a feature engineering mechanism based on normalized statistical dispersion of amplitude (NSDA) and high-order statistics by designing a perceptual processing method combining discrete Fourier transform (DFT) and self linear convolution (SLC). This helps solve such a problem that the recognizability of OFDM signals is not obvious at a low SNR. At last, a synthetic minority over-sampling technique -Deep Neural Network (SMOTE-DNN) classifier is designed to significantly enhance the classification accuracy of OFDM blind classification. By building a software radio experimental platform, BMC experimental verification is conducted on the OFDM RF signals whose subcarriers are modulated by BPSK, QPSK, MSK, 16-QAM, 64-QAM, 4-PAM and 8-PAM. The experimental results indicate that the proposed algorithm can realize BMC of asynchronous OFDM signals without prior information in various scenarios, and the comprehensive classification accuracy reaches 87.5% at a SNR of 0dB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助caisongliang采纳,获得10
2秒前
3秒前
kaixinjh1234发布了新的文献求助10
3秒前
坚定尔白发布了新的文献求助10
4秒前
Ykx完成签到,获得积分10
4秒前
jun发布了新的文献求助20
4秒前
6秒前
6秒前
Singularity应助单纯的思松采纳,获得10
6秒前
NexusExplorer应助无辜的夏山采纳,获得10
10秒前
猫滩儿完成签到,获得积分10
10秒前
朱杰发布了新的文献求助10
11秒前
11秒前
12秒前
可靠往事完成签到,获得积分10
12秒前
夏天呀发布了新的文献求助10
12秒前
Reese发布了新的文献求助10
13秒前
优美飞薇发布了新的文献求助30
13秒前
13秒前
jun完成签到,获得积分10
14秒前
flywee完成签到,获得积分10
14秒前
懦弱的安珊完成签到,获得积分10
14秒前
是是是完成签到,获得积分10
16秒前
CAE上路到上吊完成签到,获得积分10
17秒前
LIXI发布了新的文献求助10
17秒前
AN发布了新的文献求助10
18秒前
爆米花应助夜夕采纳,获得10
18秒前
欢喜完成签到 ,获得积分20
19秒前
20秒前
20秒前
jihaowen完成签到,获得积分10
20秒前
21秒前
lambda发布了新的文献求助10
21秒前
坚定尔白完成签到,获得积分10
21秒前
22秒前
23秒前
wujun发布了新的文献求助10
23秒前
加湿器发布了新的文献求助10
25秒前
26秒前
ddddddd发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092