Sensing-Based Feature Engineering and Asynchronous OFDM Blind Modulation Classification Using SMOTE-DNN

正交频分复用 计算机科学 异步通信 相移键控 软件无线电 正交调幅 调制(音乐) 认知无线电 卡姆 电子工程 人工智能 模式识别(心理学) 频道(广播) 电信 误码率 工程类 无线 哲学 美学
作者
Yuxiao Yang,Junkai Yang,Xu Chang,Xiaobo Shen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 22117-22128
标识
DOI:10.1109/jsen.2023.3346896
摘要

Blind modulation classification (BMC) is a key technology for communication perception intelligence, cognitive radio and electronic countermeasures. With the wide applications of orthogonal frequency division multiplexing (OFDM) technology in 5G communication and UAV communication, the BMC of OFDM signals is of great significance. The existing modulation classification methods of OFDM signals mainly focus on incomplete blind classification, and the receiver still needs to obtain some prior information. The BMC of asynchronous OFDM signals with completely unknown signal parameters and channel information still has some technical challenges. This paper proposes a blind classification method for asynchronous OFDM signals and a feature engineering mechanism based on normalized statistical dispersion of amplitude (NSDA) and high-order statistics by designing a perceptual processing method combining discrete Fourier transform (DFT) and self linear convolution (SLC). This helps solve such a problem that the recognizability of OFDM signals is not obvious at a low SNR. At last, a synthetic minority over-sampling technique -Deep Neural Network (SMOTE-DNN) classifier is designed to significantly enhance the classification accuracy of OFDM blind classification. By building a software radio experimental platform, BMC experimental verification is conducted on the OFDM RF signals whose subcarriers are modulated by BPSK, QPSK, MSK, 16-QAM, 64-QAM, 4-PAM and 8-PAM. The experimental results indicate that the proposed algorithm can realize BMC of asynchronous OFDM signals without prior information in various scenarios, and the comprehensive classification accuracy reaches 87.5% at a SNR of 0dB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮卡丘发布了新的文献求助50
3秒前
3秒前
打打应助七月采纳,获得10
4秒前
Ava应助怕黑傲柏采纳,获得10
4秒前
4秒前
abc778发布了新的文献求助20
5秒前
6秒前
研友_GZbO18完成签到,获得积分10
6秒前
Refrain完成签到,获得积分10
8秒前
阿夜完成签到,获得积分10
9秒前
谨慎乌完成签到,获得积分10
9秒前
9秒前
共享精神应助小罗采纳,获得10
10秒前
毛哥看文献完成签到 ,获得积分10
10秒前
orixero应助tjy采纳,获得10
11秒前
Hello应助淡然的莫茗采纳,获得10
11秒前
麦片发布了新的文献求助10
13秒前
结实的曼凝完成签到,获得积分20
13秒前
hilm应助鱿鱼先生采纳,获得10
13秒前
ferritin完成签到 ,获得积分10
17秒前
能干妙竹完成签到,获得积分10
20秒前
21秒前
传奇3应助结实的曼凝采纳,获得10
21秒前
22秒前
23秒前
25秒前
xia完成签到 ,获得积分10
25秒前
水月中辉完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
孙誉文发布了新的文献求助10
29秒前
29秒前
31秒前
布吉岛呀发布了新的文献求助10
32秒前
浮游应助烂漫的书蝶采纳,获得10
32秒前
tjy发布了新的文献求助10
33秒前
羽弦发布了新的文献求助10
34秒前
壮观从云完成签到,获得积分10
37秒前
存在发布了新的文献求助10
37秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456751
求助须知:如何正确求助?哪些是违规求助? 4563362
关于积分的说明 14289575
捐赠科研通 4487973
什么是DOI,文献DOI怎么找? 2458113
邀请新用户注册赠送积分活动 1448473
关于科研通互助平台的介绍 1424128