Sensing-Based Feature Engineering and Asynchronous OFDM Blind Modulation Classification Using SMOTE-DNN

正交频分复用 计算机科学 异步通信 相移键控 软件无线电 正交调幅 调制(音乐) 认知无线电 卡姆 电子工程 人工智能 模式识别(心理学) 频道(广播) 电信 误码率 工程类 无线 哲学 美学
作者
Yuxiao Yang,Junkai Yang,Xu Chang,Xiaobo Shen
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (14): 22117-22128
标识
DOI:10.1109/jsen.2023.3346896
摘要

Blind modulation classification (BMC) is a key technology for communication perception intelligence, cognitive radio and electronic countermeasures. With the wide applications of orthogonal frequency division multiplexing (OFDM) technology in 5G communication and UAV communication, the BMC of OFDM signals is of great significance. The existing modulation classification methods of OFDM signals mainly focus on incomplete blind classification, and the receiver still needs to obtain some prior information. The BMC of asynchronous OFDM signals with completely unknown signal parameters and channel information still has some technical challenges. This paper proposes a blind classification method for asynchronous OFDM signals and a feature engineering mechanism based on normalized statistical dispersion of amplitude (NSDA) and high-order statistics by designing a perceptual processing method combining discrete Fourier transform (DFT) and self linear convolution (SLC). This helps solve such a problem that the recognizability of OFDM signals is not obvious at a low SNR. At last, a synthetic minority over-sampling technique -Deep Neural Network (SMOTE-DNN) classifier is designed to significantly enhance the classification accuracy of OFDM blind classification. By building a software radio experimental platform, BMC experimental verification is conducted on the OFDM RF signals whose subcarriers are modulated by BPSK, QPSK, MSK, 16-QAM, 64-QAM, 4-PAM and 8-PAM. The experimental results indicate that the proposed algorithm can realize BMC of asynchronous OFDM signals without prior information in various scenarios, and the comprehensive classification accuracy reaches 87.5% at a SNR of 0dB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助沉默不言采纳,获得10
1秒前
3秒前
开心的冰淇淋完成签到,获得积分10
4秒前
8秒前
Hanguo完成签到,获得积分10
10秒前
cui发布了新的文献求助10
11秒前
KKSTAR发布了新的文献求助10
11秒前
libaibai完成签到 ,获得积分10
15秒前
HR112完成签到,获得积分0
16秒前
17秒前
TrDoubleE完成签到 ,获得积分10
17秒前
脑洞疼应助淡然的夜柳采纳,获得10
20秒前
隐形曼青应助Nakacoke77采纳,获得10
21秒前
cui完成签到,获得积分10
21秒前
共享精神应助智智采纳,获得10
21秒前
21秒前
heavennew完成签到,获得积分10
21秒前
科目三应助maclogos采纳,获得10
22秒前
砍柴少年发布了新的文献求助10
23秒前
852应助songyl采纳,获得10
23秒前
23秒前
Jaden发布了新的文献求助10
24秒前
25秒前
bkagyin应助Either采纳,获得10
27秒前
桐桐应助砍柴少年采纳,获得10
30秒前
pp发布了新的文献求助10
30秒前
搜集达人应助文艺的冬卉采纳,获得10
31秒前
33秒前
诸葛藏藏完成签到 ,获得积分10
33秒前
闲听花落完成签到 ,获得积分10
35秒前
风中寻凝发布了新的文献求助20
36秒前
伶俐碧萱完成签到 ,获得积分10
36秒前
36秒前
36秒前
无辜的怜烟完成签到 ,获得积分10
37秒前
37秒前
QING完成签到 ,获得积分20
38秒前
迷人岩发布了新的文献求助10
38秒前
38秒前
田轲关注了科研通微信公众号
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030