Hierarchical multi-instance multi-label learning for Chinese patent text classification

计算机科学 联营 人工智能 过程(计算) 语义学(计算机科学) 机器学习 序列(生物学) 情报检索 数据挖掘 遗传学 生物 操作系统 程序设计语言
作者
Yunduo Liu,Xu Fang,Yushan Zhao,Zichen Ma,Tengke Wang,Shunxiang Zhang,Yuhao Tian
出处
期刊:Connection science [Informa]
卷期号:36 (1)
标识
DOI:10.1080/09540091.2023.2295818
摘要

To further enhance the accuracy of the Chinese patent classification, this paper proposes a model, based on the patent structure and takes the patent claim as subjects, with multi-instance multi-label learning as the main method. Firstly, the patent claims are divided into multiple independent texts using the sequence number as the splitting token. For each patent, multiple claims are regarded as multiple instances, and the corresponding IPCs serve as its multiple labels. Next, the concept of secondary_label is introduced following the composition rules of IPC, and the relationships between instances and multiple secondary_labels are mined through the construction of fully-connected layers. To capture more comprehensive semantic information of instances, BIGRU and self-attention are employed to enhance semantics and reduce information loss during the training process. Finally, the max-pooling operations are utilised to obtain the predicted categories of patents based on capturing the relationships between instances and different hierarchical labels. Experimental results on the '2017 Chinese patent dataset' demonstrate that the multi-instance multi-label approach can effectively mine deeper relationships between patents and labels in classification tasks. As a result, our model significantly improves the accuracy of patent text classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
高中生完成签到,获得积分10
1秒前
1秒前
1秒前
希望天下0贩的0应助TT采纳,获得10
2秒前
xxegt完成签到 ,获得积分10
2秒前
3秒前
爱吃泡芙发布了新的文献求助10
3秒前
susu完成签到,获得积分10
5秒前
会神发布了新的文献求助10
5秒前
KK完成签到,获得积分10
6秒前
充电宝应助justin采纳,获得10
8秒前
9秒前
Ch完成签到 ,获得积分10
10秒前
12秒前
ajun完成签到,获得积分10
12秒前
12秒前
春江完成签到,获得积分10
12秒前
12秒前
漂亮的松思完成签到,获得积分20
15秒前
15秒前
xiuwen发布了新的文献求助10
16秒前
黑衣人的秘密完成签到,获得积分10
16秒前
16秒前
mushrooms119完成签到,获得积分10
17秒前
17秒前
榨菜发布了新的文献求助10
17秒前
Cindy应助体贴的夕阳采纳,获得10
17秒前
MEME完成签到,获得积分10
18秒前
zfzf0422发布了新的文献求助10
18秒前
18秒前
健忘曼云发布了新的文献求助10
18秒前
drift完成签到,获得积分10
19秒前
19秒前
安谢完成签到,获得积分10
20秒前
852应助小张采纳,获得10
21秒前
活泼的飞双完成签到,获得积分10
22秒前
热情的板栗完成签到,获得积分10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808