Wavelet and Adaptive Coordinate Attention Guided Fine-grained Residual Network for Image Denoising

计算机科学 降噪 图像去噪 人工智能 残余物 小波 模式识别(心理学) 图像处理 小波变换 计算机视觉 图像(数学) 算法
作者
Shifei Ding,Qidong Wang,Lili Guo,Xuan Li,Ling Ding,Xindong Wu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 6156-6166 被引量:5
标识
DOI:10.1109/tcsvt.2023.3348804
摘要

Convolutional neural networks (CNN) have achieved remarkable performance in image denoising. However, most existing CNNs cannot accurately capture and remove tiny noises during the denoising process and lose edge detail information easily. In this paper, we propose a fine-grained residual network guided by wavelet and adaptive coordinate attention (WACAFRN) for image denoising. Firstly, we propose an adaptive coordinate attention mechanism and combine it with cascaded Res2Net residual blocks to form an encoder network for more accurate noise removal. Secondly, we propose a wavelet attention mechanism that combines global and local residual blocks to form a decoder network, aiming to address the problem of edge detail information loss. At last, we complement the noise information through a noise estimation block to further enhance the model's ability to adapt to noise. Extensive experiment results demonstrate that our proposed method outperforms existing denoising methods in both qualitative and quantitative aspects. Notably, our method significantly improves real-world noise removal tasks on the CC dataset, with an average increase of 2.08 dB in PSNR and 0.0264 in SSIM over the state-of-the-art methods. Additionally, WACAFRN exhibits faster inference speeds, underscoring its efficiency in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
z掌握一下完成签到,获得积分10
刚刚
wulin314发布了新的文献求助20
1秒前
小蘑菇应助HAL9000采纳,获得10
1秒前
1秒前
hhm发布了新的文献求助10
1秒前
穆易羊完成签到 ,获得积分10
2秒前
在水一方应助Gnor采纳,获得10
2秒前
2秒前
3秒前
lqkcqmu发布了新的文献求助10
3秒前
z掌握一下发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
852应助杭啊采纳,获得10
4秒前
4秒前
vikki发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
在水一方应助小马过河采纳,获得10
6秒前
molec完成签到,获得积分10
6秒前
蜡笔小舒完成签到,获得积分10
6秒前
7秒前
俭朴的新柔完成签到,获得积分10
7秒前
曹国庆完成签到 ,获得积分10
8秒前
8秒前
百里丹珍完成签到,获得积分10
8秒前
9秒前
9秒前
hokin33发布了新的文献求助10
10秒前
JM完成签到,获得积分10
11秒前
11秒前
okil2完成签到,获得积分10
11秒前
子唯完成签到,获得积分10
12秒前
hehe发布了新的文献求助10
12秒前
巫凝天完成签到,获得积分10
12秒前
liu完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650