Blood Urea Nitrogen-to-Albumin Ratio May Predict Mortality in Patients with Traumatic Brain Injury from the MIMIC Database: A Retrospective Study

格拉斯哥昏迷指数 创伤性脑损伤 医学 血尿素氮 机器学习 人工智能 重症监护医学 数据库 内科学 急诊医学 肌酐 外科 计算机科学 精神科
作者
Yiran Guo,Yuxin Leng,Chengjin Gao
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 49-49
标识
DOI:10.3390/bioengineering11010049
摘要

Traumatic brain injury (TBI), a major global health burden, disrupts the neurological system due to accidents and other incidents. While the Glasgow coma scale (GCS) gauges neurological function, it falls short as the sole predictor of overall mortality in TBI patients. This highlights the need for comprehensive outcome prediction, considering not just neurological but also systemic factors. Existing approaches relying on newly developed biomolecules face challenges in clinical implementation. Therefore, we investigated the potential of readily available clinical indicators, like the blood urea nitrogen-to-albumin ratio (BAR), for improved mortality prediction in TBI. In this study, we investigated the significance of the BAR in predicting all-cause mortality in TBI patients. In terms of research methodologies, we gave preference to machine learning methods due to their exceptional performance in clinical support in recent years. Initially, we obtained data on TBI patients from the Medical Information Mart for Intensive Care database. A total of 2602 patients were included, of whom 2260 survived and 342 died in hospital. Subsequently, we performed data cleaning and utilized machine learning techniques to develop prediction models. We employed a ten-fold cross-validation method to obtain models with enhanced accuracy and area under the curve (AUC) (Light Gradient Boost Classifier accuracy, 0.905 ± 0.016, and AUC, 0.888; Extreme Gradient Boost Classifier accuracy, 0.903 ± 0.016, and AUC, 0.895; Gradient Boost Classifier accuracy, 0.898 ± 0.021, and AUC, 0.872). Simultaneously, we derived the importance ranking of the variable BAR among the included variables (in Light Gradient Boost Classifier, the BAR ranked fourth; in Extreme Gradient Boost Classifier, the BAR ranked sixth; in Gradient Boost Classifier, the BAR ranked fifth). To further evaluate the clinical utility of BAR, we divided patients into three groups based on their BAR values: Group 1 (BAR < 4.9 mg/g), Group 2 (BAR ≥ 4.9 and ≤10.5 mg/g), and Group 3 (BAR ≥ 10.5 mg/g). This stratification revealed significant differences in mortality across all time points: in-hospital mortality (7.61% vs. 15.16% vs. 31.63%), as well as one-month (8.51% vs. 17.46% vs. 36.39%), three-month (9.55% vs. 20.14% vs. 41.84%), and one-year mortality (11.57% vs. 23.76% vs. 46.60%). Building on this observation, we employed the Cox proportional hazards regression model to assess the impact of BAR segmentation on survival. Compared to Group 1, Groups 2 and 3 had significantly higher hazard ratios (95% confidence interval (CI)) for one-month mortality: 1.77 (1.37-2.30) and 3.17 (2.17-4.62), respectively. To further underscore the clinical potential of BAR as a standalone measure, we compared its performance to established clinical scores, like sequential organ failure assessment (SOFA), GCS, and acute physiology score III(APS-III), using receiver operator characteristic curve (ROC) analysis. Notably, the AUC values (95%CI) of the BAR were 0.67 (0.64-0.70), 0.68 (0.65-0.70), and 0.68 (0.65-0.70) for one-month mortality, three-month mortality, and one-year mortality. The AUC value of the SOFA did not significantly differ from that of the BAR. In conclusion, the BAR is a highly influential factor in predicting mortality in TBI patients and should be given careful consideration in future TBI prediction research. The blood urea nitrogen-to-albumin ratio may predict mortality in TBI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空笑白发布了新的文献求助10
1秒前
stepha完成签到,获得积分10
1秒前
yeyeye发布了新的文献求助10
1秒前
云之南完成签到,获得积分20
2秒前
2秒前
啦啦啦发布了新的文献求助10
3秒前
3秒前
6秒前
kyoko886完成签到,获得积分10
6秒前
wu8577应助小猪玉采纳,获得10
6秒前
wenxian完成签到,获得积分10
9秒前
xiaozhao发布了新的文献求助150
9秒前
9秒前
9秒前
FashionBoy应助司空笑白采纳,获得10
11秒前
12秒前
13秒前
Merlin应助陈三三采纳,获得30
13秒前
嗯嗯嗯发布了新的文献求助10
16秒前
白羊完成签到,获得积分10
16秒前
chensihao发布了新的文献求助10
17秒前
谦让的莆完成签到 ,获得积分10
17秒前
李爱国应助xiaohong采纳,获得10
18秒前
20秒前
梦灵发布了新的文献求助10
21秒前
123456发布了新的文献求助10
21秒前
充电宝应助Wang采纳,获得10
22秒前
简时完成签到 ,获得积分10
22秒前
23秒前
25秒前
26秒前
26秒前
28秒前
squirrelcone发布了新的文献求助30
29秒前
啦啦啦完成签到,获得积分20
29秒前
rena发布了新的文献求助10
29秒前
30秒前
淡然问儿发布了新的文献求助10
31秒前
32秒前
燕尔蓝完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547