Blood Urea Nitrogen-to-Albumin Ratio May Predict Mortality in Patients with Traumatic Brain Injury from the MIMIC Database: A Retrospective Study

格拉斯哥昏迷指数 创伤性脑损伤 医学 血尿素氮 机器学习 人工智能 重症监护医学 数据库 内科学 急诊医学 肌酐 外科 计算机科学 精神科
作者
Yiran Guo,Yuxin Leng,Chengjin Gao
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (1): 49-49
标识
DOI:10.3390/bioengineering11010049
摘要

Traumatic brain injury (TBI), a major global health burden, disrupts the neurological system due to accidents and other incidents. While the Glasgow coma scale (GCS) gauges neurological function, it falls short as the sole predictor of overall mortality in TBI patients. This highlights the need for comprehensive outcome prediction, considering not just neurological but also systemic factors. Existing approaches relying on newly developed biomolecules face challenges in clinical implementation. Therefore, we investigated the potential of readily available clinical indicators, like the blood urea nitrogen-to-albumin ratio (BAR), for improved mortality prediction in TBI. In this study, we investigated the significance of the BAR in predicting all-cause mortality in TBI patients. In terms of research methodologies, we gave preference to machine learning methods due to their exceptional performance in clinical support in recent years. Initially, we obtained data on TBI patients from the Medical Information Mart for Intensive Care database. A total of 2602 patients were included, of whom 2260 survived and 342 died in hospital. Subsequently, we performed data cleaning and utilized machine learning techniques to develop prediction models. We employed a ten-fold cross-validation method to obtain models with enhanced accuracy and area under the curve (AUC) (Light Gradient Boost Classifier accuracy, 0.905 ± 0.016, and AUC, 0.888; Extreme Gradient Boost Classifier accuracy, 0.903 ± 0.016, and AUC, 0.895; Gradient Boost Classifier accuracy, 0.898 ± 0.021, and AUC, 0.872). Simultaneously, we derived the importance ranking of the variable BAR among the included variables (in Light Gradient Boost Classifier, the BAR ranked fourth; in Extreme Gradient Boost Classifier, the BAR ranked sixth; in Gradient Boost Classifier, the BAR ranked fifth). To further evaluate the clinical utility of BAR, we divided patients into three groups based on their BAR values: Group 1 (BAR < 4.9 mg/g), Group 2 (BAR ≥ 4.9 and ≤10.5 mg/g), and Group 3 (BAR ≥ 10.5 mg/g). This stratification revealed significant differences in mortality across all time points: in-hospital mortality (7.61% vs. 15.16% vs. 31.63%), as well as one-month (8.51% vs. 17.46% vs. 36.39%), three-month (9.55% vs. 20.14% vs. 41.84%), and one-year mortality (11.57% vs. 23.76% vs. 46.60%). Building on this observation, we employed the Cox proportional hazards regression model to assess the impact of BAR segmentation on survival. Compared to Group 1, Groups 2 and 3 had significantly higher hazard ratios (95% confidence interval (CI)) for one-month mortality: 1.77 (1.37-2.30) and 3.17 (2.17-4.62), respectively. To further underscore the clinical potential of BAR as a standalone measure, we compared its performance to established clinical scores, like sequential organ failure assessment (SOFA), GCS, and acute physiology score III(APS-III), using receiver operator characteristic curve (ROC) analysis. Notably, the AUC values (95%CI) of the BAR were 0.67 (0.64-0.70), 0.68 (0.65-0.70), and 0.68 (0.65-0.70) for one-month mortality, three-month mortality, and one-year mortality. The AUC value of the SOFA did not significantly differ from that of the BAR. In conclusion, the BAR is a highly influential factor in predicting mortality in TBI patients and should be given careful consideration in future TBI prediction research. The blood urea nitrogen-to-albumin ratio may predict mortality in TBI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮应助等等采纳,获得10
2秒前
心灵美诗霜完成签到 ,获得积分10
2秒前
绿色植物完成签到,获得积分10
4秒前
孤海未蓝完成签到,获得积分10
6秒前
11秒前
小杨爱吃羊完成签到 ,获得积分10
12秒前
端庄优雅完成签到 ,获得积分10
12秒前
11完成签到 ,获得积分10
12秒前
Eliii完成签到 ,获得积分10
13秒前
世上僅有的榮光之路完成签到,获得积分10
13秒前
jia发布了新的文献求助30
16秒前
liuyong6413完成签到 ,获得积分10
16秒前
梁静宇完成签到 ,获得积分10
16秒前
天将明完成签到 ,获得积分10
17秒前
归海海之完成签到,获得积分10
20秒前
和平星完成签到 ,获得积分10
22秒前
xuli21315完成签到 ,获得积分10
22秒前
HHM完成签到 ,获得积分10
26秒前
积极的忆曼完成签到,获得积分20
26秒前
TGU的小马同学完成签到 ,获得积分10
29秒前
汉堡包应助纯真的冰蓝采纳,获得10
31秒前
jia完成签到,获得积分10
31秒前
wodetaiyangLLL完成签到 ,获得积分10
32秒前
33秒前
cong完成签到 ,获得积分10
36秒前
勇往直前发布了新的文献求助10
37秒前
我爱Chem完成签到 ,获得积分10
38秒前
38秒前
161319141完成签到 ,获得积分10
41秒前
好好学习完成签到,获得积分10
42秒前
坦率的从波完成签到 ,获得积分10
43秒前
linhante完成签到 ,获得积分10
44秒前
果粒红豆豆完成签到 ,获得积分10
47秒前
荔枝完成签到 ,获得积分10
47秒前
不安的朋友完成签到,获得积分10
48秒前
子民完成签到,获得积分10
50秒前
zzt发布了新的文献求助10
55秒前
狗十七完成签到 ,获得积分10
56秒前
Amosummer完成签到,获得积分10
57秒前
小陈完成签到,获得积分10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010