Design of Forward-Looking Sonar System for Real-Time Image Segmentation With Light Multiscale Attention Net

计算机科学 分割 声纳 人工智能 特征提取 特征(语言学) 计算机视觉 图像分割 帧(网络) 帧速率 交叉口(航空) 深度学习 推论 模式识别(心理学) 工程类 电信 航空航天工程 哲学 语言学
作者
Dongdong Zhao,Hongchao Zhou,Peng Chen,Yingtian Hu,Weihao Ge,Yuanjie Dang,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-17 被引量:13
标识
DOI:10.1109/tim.2023.3341127
摘要

Forward-looking sonar is a commonly used underwater detection device. However, due to the complex underwater environment, small target areas, and blurred features, the detection accuracy is poor and not conducive to quickly finding the desired targets. In recent years, deep learning has developed rapidly, and semantic segmentation network models have shown strong segmentation performance, with enormous application potential in forward-looking sonar image segmentation. A lightweight multiscale attention network is proposed in this article for real-time semantic segmentation of forward-looking sonar system. The proposed model ensures the training accuracy and inference speed of the semantic segmentation network through the structural reparameterization module and improves the feature extraction ability of the network by fusing multiscale information through the multiscale feature attention gate. Compared with other models, the proposed model achieved good results on semantic segmentation datasets and data collected from self-developed devices. The mean intersection over union (mIoU) reached 0.734 on a public dataset, outperforming existing mainstream models. Moreover, the inference speed can reach 1250 frame rate per second (FPS) on 2080Ti. An embedded forward-looking sonar host computer is designed based on Atlas200, and the proposed network can run up to 87 FPS on the embedded host computer, with a frame rate of 9.5 FPS per unit of power consumption, which is better than that of mobile phones and X86 computers. The forward-looking sonar system constructed based on this achieved satisfactory results in engineering practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
灵巧的以亦完成签到 ,获得积分10
3秒前
da发布了新的文献求助10
4秒前
实验耗材发布了新的文献求助10
4秒前
高高发布了新的文献求助10
4秒前
5秒前
XYCH发布了新的文献求助10
5秒前
大菠萝发布了新的文献求助10
6秒前
顺利煎蛋完成签到,获得积分10
7秒前
8秒前
czh应助666采纳,获得10
8秒前
安生完成签到,获得积分10
8秒前
如意绾绾完成签到,获得积分10
9秒前
玩命的鱼完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
青木完成签到,获得积分10
12秒前
玩命的鱼发布了新的文献求助10
13秒前
DLL完成签到 ,获得积分10
13秒前
角落的蘑菇完成签到,获得积分10
14秒前
nenoaowu发布了新的文献求助30
15秒前
15秒前
甜蜜发带发布了新的文献求助10
16秒前
Ricewind发布了新的文献求助10
16秒前
fly发布了新的文献求助30
16秒前
bkagyin应助高高采纳,获得10
17秒前
17秒前
善学以致用应助大菠萝采纳,获得10
18秒前
乖猫要努力应助玩命的鱼采纳,获得10
18秒前
222发布了新的文献求助10
19秒前
20秒前
如意绾绾发布了新的文献求助10
20秒前
SYLH应助fufu采纳,获得10
20秒前
coups哒嘟完成签到,获得积分10
20秒前
dzy1317完成签到,获得积分10
21秒前
22秒前
23秒前
Hudson发布了新的文献求助10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163