Multimodal Emotion Recognition via Convolutional Neural Networks: Comparison of different strategies on two multimodal datasets

计算机科学 卷积神经网络 模态(人机交互) 面部表情 厌恶 人工智能 模式 语音识别 模式识别(心理学) 光流 图像(数学) 心理学 社会科学 愤怒 精神科 社会学
作者
Umberto Bilotti,Carmen Bisogni,Maria De Marsico,Salvatore Tramonte
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107708-107708 被引量:7
标识
DOI:10.1016/j.engappai.2023.107708
摘要

The aim of this paper is to investigate emotion recognition using a multimodal approach that exploits convolutional neural networks (CNNs) with multiple input. Multimodal approaches allow different modalities to cooperate in order to achieve generally better performances because different features are extracted from different pieces of information. In this work, the facial frames, the optical flow computed from consecutive facial frames, and the Mel Spectrograms (from the word melody) are extracted from videos and combined together in different ways to understand which modality combination works better. Several experiments are run on the models by first considering one modality at a time so that good accuracy results are found on each modality. Afterward, the models are concatenated to create a final model that allows multiple inputs. For the experiments the datasets used are BAUM-1 ((Bahçeşehir University Multimodal Affective Database - 1) and RAVDESS (Ryerson Audio–Visual Database of Emotional Speech and Song), which both collect two distinguished sets of videos based on the different intensity of the expression, that is acted/strong or spontaneous/normal, providing the representations of the following emotional states that will be taken into consideration: angry, disgust, fearful, happy and sad. The performances of the proposed models are shown through accuracy results and some confusion matrices, demonstrating better accuracy than the compared proposals in the literature. The best accuracy achieved on BAUM-1 dataset is about 95%, while on RAVDESS it is about 95.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗雪卉发布了新的文献求助10
刚刚
xy完成签到,获得积分10
1秒前
天天快乐应助aka2012采纳,获得10
4秒前
CipherSage应助浅泽采纳,获得10
5秒前
黑黑黑完成签到,获得积分10
6秒前
ZLY关闭了ZLY文献求助
7秒前
cccool完成签到,获得积分10
9秒前
慕青应助zzzz采纳,获得10
9秒前
jovrtic完成签到,获得积分10
10秒前
Patrick完成签到,获得积分10
10秒前
李爱国应助eden采纳,获得10
12秒前
Remorn完成签到,获得积分10
12秒前
qhy完成签到 ,获得积分10
12秒前
zhongbo完成签到,获得积分10
14秒前
彭于晏应助lvlvlvsh采纳,获得10
14秒前
思源应助远方采纳,获得10
14秒前
voyager完成签到,获得积分10
14秒前
CP完成签到,获得积分10
15秒前
gxl完成签到,获得积分10
16秒前
脑洞疼应助北城栀子刂AZ采纳,获得10
16秒前
传奇3应助小吃惑采纳,获得10
17秒前
18秒前
科研通AI2S应助MQ采纳,获得10
20秒前
传奇3应助cccool采纳,获得10
20秒前
怕黑初曼发布了新的文献求助10
21秒前
年轻以寒发布了新的文献求助10
22秒前
XuhuiHuang完成签到 ,获得积分10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
sherrycofe应助科研通管家采纳,获得10
22秒前
zfy应助科研通管家采纳,获得10
23秒前
吉祥应助科研通管家采纳,获得30
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
Wenpandaen应助科研通管家采纳,获得10
23秒前
不配.应助科研通管家采纳,获得20
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194