Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model

磁共振成像 计算机科学 磁共振弥散成像 人工智能 降噪 放射治疗计划 核医学 模式识别(心理学) 医学 放射治疗 放射科
作者
Shaoyan Pan,Elham Abouei,Jacob Wynne,Chih‐Wei Chang,Tonghe Wang,Richard L. J. Qiu,Yuheng Li,Junbo Peng,Justin Roper,Pretesh Patel,David S. Yu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2538-2548 被引量:66
标识
DOI:10.1002/mp.16847
摘要

Abstract Background and purpose Magnetic resonance imaging (MRI)‐based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error‐prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI‐to‐CT transformer‐based improved denoising diffusion probabilistic model (MC‐IDDPM) to translate MRI into high‐quality sCT to facilitate radiation treatment planning. Methods MC‐IDDPM implements diffusion processes with a shifted‐window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted‐window transformer V‐net (Swin‐Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise‐free CT scans. With an optimally trained Swin‐Vnet, the reverse diffusion process was used to generate noise‐free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal‐to‐Noise Ratio (PSNR), Multi‐scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. Results MC‐IDDPM generated brain sCTs with state‐of‐the‐art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC‐IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. Conclusions We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer‐based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high‐quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初夏完成签到,获得积分10
刚刚
赘婿应助花卷采纳,获得10
1秒前
1秒前
帅气的宽发布了新的文献求助10
2秒前
3秒前
蛋炒饭不加蛋完成签到,获得积分10
3秒前
猪猪侠发布了新的文献求助10
4秒前
王悦竹发布了新的文献求助10
4秒前
忆彡完成签到,获得积分10
4秒前
甜美的芷发布了新的文献求助10
4秒前
朴实的绿蝶完成签到,获得积分10
4秒前
maryin完成签到,获得积分10
5秒前
5秒前
5秒前
研友_V8RdVn完成签到,获得积分10
5秒前
HH完成签到,获得积分10
5秒前
我是老大应助危机的雍采纳,获得10
7秒前
深情安青应助朴实的绿蝶采纳,获得30
8秒前
123456发布了新的文献求助10
8秒前
wanci应助粉色的小天鹅采纳,获得10
8秒前
8秒前
9秒前
9秒前
Sun完成签到,获得积分10
9秒前
花卷给花卷的求助进行了留言
9秒前
打打应助木木采纳,获得10
11秒前
psycho发布了新的文献求助10
11秒前
11秒前
舒适的雁风完成签到,获得积分10
11秒前
2568269431完成签到 ,获得积分10
13秒前
春国发布了新的文献求助10
14秒前
苗条桐发布了新的文献求助10
14秒前
浮光完成签到,获得积分10
15秒前
TT发布了新的文献求助10
15秒前
无奈手套发布了新的文献求助10
15秒前
17秒前
晴栀发布了新的文献求助20
17秒前
Lucas应助恋风阁采纳,获得10
18秒前
情怀应助jjhh采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911514
求助须知:如何正确求助?哪些是违规求助? 4186972
关于积分的说明 13002173
捐赠科研通 3954804
什么是DOI,文献DOI怎么找? 2168480
邀请新用户注册赠送积分活动 1186929
关于科研通互助平台的介绍 1094247