清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model

磁共振成像 计算机科学 磁共振弥散成像 人工智能 降噪 放射治疗计划 核医学 模式识别(心理学) 医学 放射治疗 放射科
作者
Shaoyan Pan,Elham Abouei,Jacob Wynne,Chih‐Wei Chang,Tonghe Wang,Richard L. J. Qiu,Yuheng Li,Junbo Peng,Justin Roper,Pretesh Patel,David S. Yu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2538-2548 被引量:33
标识
DOI:10.1002/mp.16847
摘要

Abstract Background and purpose Magnetic resonance imaging (MRI)‐based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error‐prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI‐to‐CT transformer‐based improved denoising diffusion probabilistic model (MC‐IDDPM) to translate MRI into high‐quality sCT to facilitate radiation treatment planning. Methods MC‐IDDPM implements diffusion processes with a shifted‐window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted‐window transformer V‐net (Swin‐Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise‐free CT scans. With an optimally trained Swin‐Vnet, the reverse diffusion process was used to generate noise‐free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal‐to‐Noise Ratio (PSNR), Multi‐scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. Results MC‐IDDPM generated brain sCTs with state‐of‐the‐art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC‐IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. Conclusions We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer‐based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high‐quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
斯文败类应助yana采纳,获得10
15秒前
自由从筠完成签到 ,获得积分10
18秒前
糊涂的青烟完成签到 ,获得积分10
18秒前
无语的冰淇淋完成签到 ,获得积分10
24秒前
江三村完成签到 ,获得积分10
28秒前
huanghe完成签到,获得积分10
38秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
38秒前
52秒前
润润轩轩完成签到 ,获得积分10
59秒前
慕青应助volvoamg采纳,获得10
1分钟前
Skywings完成签到,获得积分10
1分钟前
LeoBigman完成签到 ,获得积分10
1分钟前
斯文败类应助volvoamg采纳,获得10
2分钟前
Akim应助volvoamg采纳,获得10
2分钟前
2分钟前
HR112完成签到 ,获得积分10
3分钟前
旅程完成签到 ,获得积分10
3分钟前
www完成签到 ,获得积分10
3分钟前
lingling完成签到 ,获得积分10
3分钟前
bzdjsmw完成签到 ,获得积分10
3分钟前
研友_n2JMKn完成签到 ,获得积分10
4分钟前
王磊完成签到 ,获得积分10
4分钟前
习月阳完成签到,获得积分10
4分钟前
lzxbarry完成签到,获得积分0
5分钟前
5分钟前
随机子发布了新的文献求助10
6分钟前
6分钟前
稻子完成签到 ,获得积分10
6分钟前
yana发布了新的文献求助10
6分钟前
yana完成签到,获得积分10
6分钟前
6分钟前
冯柳旭发布了新的文献求助10
6分钟前
ww完成签到,获得积分10
6分钟前
冯柳旭完成签到,获得积分10
7分钟前
7分钟前
wumumu发布了新的文献求助10
7分钟前
wumumu完成签到,获得积分10
7分钟前
7分钟前
俏皮的半夏完成签到 ,获得积分10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080128
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652302
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752096