Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model

磁共振成像 计算机科学 磁共振弥散成像 人工智能 降噪 放射治疗计划 核医学 模式识别(心理学) 医学 放射治疗 放射科
作者
Shaoyan Pan,Elham Abouei,Jacob Wynne,Chih‐Wei Chang,Tonghe Wang,Richard L. J. Qiu,Yuheng Li,Junbo Peng,Justin Roper,Pretesh Patel,David S. Yu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2538-2548 被引量:66
标识
DOI:10.1002/mp.16847
摘要

Abstract Background and purpose Magnetic resonance imaging (MRI)‐based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error‐prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI‐to‐CT transformer‐based improved denoising diffusion probabilistic model (MC‐IDDPM) to translate MRI into high‐quality sCT to facilitate radiation treatment planning. Methods MC‐IDDPM implements diffusion processes with a shifted‐window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted‐window transformer V‐net (Swin‐Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise‐free CT scans. With an optimally trained Swin‐Vnet, the reverse diffusion process was used to generate noise‐free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal‐to‐Noise Ratio (PSNR), Multi‐scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. Results MC‐IDDPM generated brain sCTs with state‐of‐the‐art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC‐IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. Conclusions We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer‐based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high‐quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李不乐完成签到,获得积分10
8秒前
老野猫完成签到 ,获得积分10
13秒前
18秒前
seven完成签到,获得积分10
18秒前
雪梅完成签到 ,获得积分10
19秒前
李沐唅完成签到,获得积分10
19秒前
40873完成签到 ,获得积分10
20秒前
25秒前
28秒前
ww完成签到,获得积分10
29秒前
Jeamren完成签到,获得积分10
31秒前
诺796完成签到,获得积分10
35秒前
马路完成签到,获得积分10
38秒前
wll1091完成签到 ,获得积分10
38秒前
陌上俨然完成签到,获得积分10
39秒前
老八完成签到,获得积分10
51秒前
ves完成签到,获得积分10
52秒前
z!完成签到 ,获得积分10
53秒前
研友_nongdalyl完成签到,获得积分10
53秒前
yyyyj完成签到,获得积分20
57秒前
黄志平完成签到 ,获得积分10
57秒前
59秒前
无辜紫菜完成签到,获得积分10
1分钟前
壮观的冰双完成签到,获得积分10
1分钟前
KONG完成签到,获得积分10
1分钟前
周四一完成签到,获得积分10
1分钟前
桑桑完成签到,获得积分10
1分钟前
咩咩完成签到,获得积分10
1分钟前
1分钟前
Yingkun_Xu完成签到,获得积分10
1分钟前
1分钟前
陈诚完成签到,获得积分10
1分钟前
1分钟前
x仙贝完成签到,获得积分20
1分钟前
洋洋完成签到,获得积分20
1分钟前
xlbn完成签到,获得积分10
1分钟前
明亮的老四完成签到 ,获得积分10
1分钟前
镜镜子完成签到 ,获得积分10
1分钟前
幽默的乐安完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369