亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model

磁共振成像 计算机科学 磁共振弥散成像 人工智能 降噪 放射治疗计划 核医学 模式识别(心理学) 医学 放射治疗 放射科
作者
Shaoyan Pan,Elham Abouei,Jacob Wynne,Chih‐Wei Chang,Tonghe Wang,Richard L. J. Qiu,Yuheng Li,Junbo Peng,Justin Roper,Pretesh Patel,David S. Yu,Hui Mao,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2538-2548 被引量:66
标识
DOI:10.1002/mp.16847
摘要

Abstract Background and purpose Magnetic resonance imaging (MRI)‐based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error‐prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI‐to‐CT transformer‐based improved denoising diffusion probabilistic model (MC‐IDDPM) to translate MRI into high‐quality sCT to facilitate radiation treatment planning. Methods MC‐IDDPM implements diffusion processes with a shifted‐window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted‐window transformer V‐net (Swin‐Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise‐free CT scans. With an optimally trained Swin‐Vnet, the reverse diffusion process was used to generate noise‐free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal‐to‐Noise Ratio (PSNR), Multi‐scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. Results MC‐IDDPM generated brain sCTs with state‐of‐the‐art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC‐IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. Conclusions We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer‐based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high‐quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
英姑应助Wang采纳,获得10
27秒前
安详雅绿完成签到,获得积分10
35秒前
无极2023完成签到 ,获得积分0
54秒前
1分钟前
1分钟前
兼听则明完成签到,获得积分10
1分钟前
迷途小书童完成签到,获得积分10
1分钟前
1分钟前
NEKO发布了新的文献求助30
1分钟前
ramshoshi完成签到,获得积分10
1分钟前
Damon完成签到,获得积分10
1分钟前
Lexi完成签到,获得积分10
2分钟前
烟花应助江洋大盗采纳,获得10
2分钟前
2分钟前
江洋大盗发布了新的文献求助10
2分钟前
wynne313完成签到 ,获得积分10
2分钟前
引力完成签到,获得积分10
2分钟前
李彦完成签到,获得积分10
3分钟前
淡定的幻枫完成签到 ,获得积分10
3分钟前
七色光完成签到,获得积分10
3分钟前
小黑超努力完成签到 ,获得积分10
3分钟前
3分钟前
美满的芹发布了新的文献求助30
3分钟前
arui发布了新的文献求助10
3分钟前
3分钟前
wcj发布了新的文献求助10
4分钟前
幸福的鑫鹏完成签到 ,获得积分10
4分钟前
Demi_Ming完成签到,获得积分10
4分钟前
英姑应助美满的芹采纳,获得50
4分钟前
wmz完成签到 ,获得积分10
4分钟前
zzzz完成签到 ,获得积分10
4分钟前
halo应助zakaria采纳,获得40
4分钟前
温暖的绮南完成签到,获得积分10
4分钟前
arui完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
figure完成签到 ,获得积分10
5分钟前
彭于晏应助NEKO采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853414
捐赠科研通 4689412
什么是DOI,文献DOI怎么找? 2540611
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608